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Chapter 9

Multivariable and Vector Functions

9.1 Functions of Several Variables and Three Dimensional Space

Preview Activity 9.1. When people buy a large ticket item like a car or a house, they often take
out a loan to make the purchase. The loan is paid back in monthly installments until the entire
amount of the loan, plus interest, is paid. The monthly payment that the borrower has to make
depends on the amount P of money borrowed (called the principal), the duration t of the loan in
years, and the interest rate r. For example, if we borrow $18,000 to buy a car, the monthly payment
M that we need to make to pay off the loan is given by the formula

M =
1500r

1− 1

(1+ r
12)

12t

.

The variables r and t are independent of each other, so using functional notation we write

M(r, t) =
1500r

1− 1

(1+ r
12)

12t

.

(a) Find the monthly payments on this loan if the interest rate is 6% and the duration of the
loan is 5 years.

(b) Evaluate M(0.05, 4). Explain in words what this calculation represents.

(c) Now consider only loans where the interest rate is 5%. Calculate the monthly payments as
indicated in Table 9.1. Round payments to the nearest penny.

(d) Now consider only loans where the duration is 3 years. Calculate the monthly payments
as indicated in Table 9.2. Round payments to the nearest penny.

(e) Describe as best you can the combinations of interest rates and durations of loans that
result in a monthly payment of $200.

1



2 9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE

Duration (in years) 2 3 4 5 6

Monthly payments (dollars)

Table 9.1: Monthly payments at an interest rate of 5%.

Interest rate 0.03 0.05 0.07 0.09 0.11

Monthly payments (dollars)

Table 9.2: Monthly payments over three years.

./



9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE 3

Activity 9.1.

Identify the domain of each of the following functions. Draw a picture of each domain in the
x-y plane.

(a) f(x, y) = x2 + y2

(b) f(x, y) =
√
x2 + y2

(c) Q(x, y) = x+y
x2−y2

(d) s(x, y) = 1√
1−xy2

C



4 9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE

x\y 0.2 0.4 0.6 0.8 1.0 1.2 1.4

25 7.6 14.0 18.2 19.5 17.8 13.2 6.5
50 30.4 56.0 72.8 78.1 71.0 52.8 26.2
75 68.4 126.1 163.8 175.7 159.8 118.7 58.9
100 121.7 224.2 291.3 312.4 284.2 211.1 104.7
125 190.1 350.3 455.1 488.1 444.0 329.8 163.6
150 273.8 504.4 655.3 702.8 639.3 474.9 235.5
175 372.7 686.5 892.0 956.6 870.2 646.4 320.6
200 486.8 896.7 1165.0 1249.5 1136.6 844.3 418.7
225 616.2 1134.9 1474.5 1581.4 1438.5 1068.6 530.0
250

Table 9.3: Values of f(x, y) = x2 sin(2y)
g .

Activity 9.2.

Complete the last row in Table 9.3 to provide the needed values of the function f .

C



9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE 5

Activity 9.3.
(a) Consider the set of points (x, y, z) that satisfy the equation x = 2. Describe this set as

best you can.

(b) Consider the set of points (x, y, z) that satisfy the equation y = −1. Describe this set as
best you can.

(c) Consider the set of points (x, y, z) that satisfy the equation z = 0. Describe this set as
best you can.

C



6 9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE

Activity 9.4.

Let P = (x0, y0, z0) and Q = (x1, y1, z1) be two points in R3. These two points form opposite
vertices of a rectangular box whose sides are planes parallel to the coordinate planes as illus-
trated in Figure 9.1, and the distance between P and Q is the length of the diagonal shown in
Figure 9.1.

(x0, y0, z0)

(x1, y1, z1)

Figure 9.1: The distance formula in R3.

(a) Consider one of the right triangles in the base of the box whose hypotenuse is shown as
the red line in Figure 9.1. What are the vertices of this triangle? Since this right triangle
lies in a plane, we can use the Pythagorean Theorem to find a formula for the length of
the hypotenuse of this triangle. Find such a formula, which will be in terms of x0, y0,
x1, and y1.

(b) Now notice that the triangle whose hypotenuse is the blue segment connecting the
points P and Q with a leg as the hypotenuse of the triangle found in part (a) lies en-
tirely in a plane, so we can again use the Pythagorean Theorem to find the length of its
hypotenuse. Explain why the length of this hypotenuse, which is the distance between
the points P and Q, is √

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2.

C



9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE 7

Activity 9.5.

In the following questions, we investigate the use of traces to better understand a function
through both tables and graphs.

(a) Identify the y = 0.6 trace for the range function f(x, y) = x2 sin(2y)
g by highlighting or

circling the appropriate cells in Table 9.3. Write a sentence to describe the behavior of
the function along this trace.

(b) Identify the x = 150 trace for the range function by highlighting or circling the appro-
priate cells in Table 9.3. Write a sentence to describe the behavior of the function along
this trace.

−4 −2 2 4

−4

−2

2

4x

z

y

Figure 9.2: Coordinate axes to sketch traces.

(c) For the function g(x, y) = x2 + y2 + 1, explain the type of function that each trace in the
x direction will be (keeping y constant). Plot the y = −4, y = −2, y = 0, y = 2, and
y = 4 traces in 3-dimensional coordinate system provided in Figure 9.2.

(d) For the function g(x, y) = x2 + y2 + 1, explain the type of function that each trace in the
y direction will be (keeping x constant). Plot the x = −4, x = −2, x = 0, x = 2, and
x = 4 traces in 3-dimensional coordinate system in Figure 9.2.

(e) Describe the surface generated by the function g.

C
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9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE 9

Activity 9.6.

On the topographical map of the Porcupine Mountains in Figure 9.3,

(a) identify the highest and lowest points you can find;

(b) from a point of your choice, determine a path of steepest ascent that leads to the highest
point;

(c) from that same initial point, determine the least steep path that leads to the highest
point.

C



10 9.1. FUNCTIONS OF SEVERAL VARIABLES AND THREE DIMENSIONAL SPACE

Activity 9.7.

x

y

x

y

Figure 9.4: Left: Level curves for f(x, y) = x2 + y2. Right: Level curves for g(x, y) =
√
x2 + y2.

(a) Let f(x, y) = x2 + y2. Draw the level curves f(x, y) = k for k = 1, k = 2, k = 3, and
k = 4 on the left set of axes given in Figure 9.4. (You decide on the scale of the axes.)
Explain what the surface defined by f looks like.

(b) Let g(x, y) =
√
x2 + y2. Draw the level curves g(x, y) = k for k = 1, k = 2, k = 3, and

k = 4 on the right set of axes given in Figure 9.4. (You decide on the scale of the axes.)
Explain what the surface defined by g looks like.

(c) Compare and contrast the graphs of f and g. How are they alike? How are they differ-
ent? Use traces for each function to help answer these questions.

C



9.2. VECTORS 11

9.2 Vectors

Preview Activity 9.2. After working out, Sarah and John leave the Recreation Center on the Grand
Valley State University Allendale campus (a map of which is given in Figure ??) to go to their next
classes.1 Suppose we record Sarah’s movement on the map in a pair 〈x, y〉 (we will call this pair a
vector), where x is the horizontal distance (in feet) she moves (with east as the positive direction)
and y as the vertical distance (in feet) she moves (with north as the positive direction). We do the
same for John. Throughout, use the legend to estimate your responses as best you can.

(a) What is the vector v1 = 〈x, y〉 that describes Sarah’s movement if she walks directly in a
straight line path from the Recreation Center to the entrance at the northwest end of Mack-
inac Hall? (Assume a straight line path, even if there are buildings in the way.) Explain
how you found this vector. What is the total distance in feet between the Recreation Center
and the entrance to Mackinac Hall? Measure the number of feet directly and then explain
how to calculate this distance in terms of x and y.

(b) What is the vector v2 = 〈x, y〉 that describes John’s change in position if he walks directly
from the Recreation Center to Au Sable Hall? How many feet are there between Recreation
Center to Au Sable Hall in terms of x and y?

(c) What is the vector v3 = 〈x, y〉 that describes the change in position if John walks directly
from Au Sable Hall to the northwest entrance of Mackinac Hall to meet up with Sarah after
class? What relationship do you see among the vectors v1, v2, and v3? Explain why this
relationship should hold.

./

1GVSU campus map from http://www.gvsu.edu/homepage/files/pdf/maps/allendale.pdf, used with
permission from GVSU, credit to illustrator Chris Bessert.

http://www.gvsu.edu/homepage/files/pdf/maps/allendale.pdf


12 9.2. VECTORS

Activity 9.8.

As a class, determine a coordinatization of your classroom, agreeing on some convenient set of
axes (e.g., an intersection of walls and floor) and some units in the x, y, and z directions (e.g.,
using lengths of sides of floor, ceiling, or wall tiles). Let O be the origin of your coordinate
system. Then, choose three points, A, B, and C in the room, and complete the following.

(a) Determine the coordinates of the points A, B, and C.

(b) Determine the components of the indicated vectors.

(i)
−→
OA (ii)

−−→
OB (iii)

−−→
OC (iv)

−−→
AB (v)

−→
AC (vi)

−−→
BC

C



9.2. VECTORS 13

Activity 9.9.

Let u = 〈2, 3〉, v = 〈−1, 4〉.
(a) Using the two specific vectors above, what is the natural way to define the vector sum

u + v?

(b) In general, how do you think the vector sum a+b of vectors a = 〈a1, a2〉 and b = 〈b1, b2〉
in R2 should be defined? Write a formal definition of a vector sum based on your
intuition.

(c) In general, how do you think the vector sum a + b of vectors a = 〈a1, a2, a3〉 and
b = 〈b1, b2, b3〉 in R3 should be defined? Write a formal definition of a vector sum
based on your intuition.

(d) Returning to the specific vector v = 〈−1, 4〉 given above, what is the natural way to
define the scalar multiple 1

2v?

(e) In general, how do you think a scalar multiple of a vector a = 〈a1, a2〉 in R2 by a scalar
c should be defined? how about for a scalar multiple of a vector a = 〈a1, a2, a3〉 in R3

by a scalar c? Write a formal definition of a scalar multiple of a vector based on your
intuition.

C



14 9.2. VECTORS

Activity 9.10.

v

u

Figure 9.5

v

u

Figure 9.6

Suppose that u and v are the vectors shown in Figure 9.5.

(a) On Figure 9.5, sketch the vectors u + v, v − u, 2u, −2u, and −3v.

(b) What is 0v?

(c) On Figure 9.6, sketch the vectors −3v, −2v, −1v, 2v, and 3v.

(d) Give a geometric description of the set of vectors tv where t is any scalar.

(e) On Figure 9.6, sketch the vectors u− 3v, u− 2v, u− v, u + v, and u + 2v.

(f) Give a geometric description of the set of vectors u + tv where t is any scalar.

C
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Activity 9.11.

2 4

3

7

A

B

x

y

Figure 9.7: The vector defined by A and B.

v

v1

v2

(v1, v2)

x

y

Figure 9.8: An arbitrary vector, v.

(a) Let A = (2, 3) and B = (4, 7), as shown in Figure 9.7. Compute |−−→AB|.
(b) Let v = 〈v1, v2〉 be the vector in R2 with components v1 and v2 as shown in Figure 9.8.

Use the distance formula to find a general formula for |v|.
(c) Let v = 〈v1, v2, v3〉 be a vector in R3. Use the distance formula to find a general formula

for |v|.
(d) Suppose that u = 〈2, 3〉 and v = 〈−1, 2〉. Find |u|, |v|, and |u + v|. Is it true that
|u + v| = |u|+ |v|?

(e) Under what conditions will |u+ v| = |u|+ |v|? (Hint: Think about how u, v, and u+ v
form the sides of a triangle.)

(f) With the vector u = 〈2, 3〉, find the lengths of 2u, 3u, and −2u, respectively, and use
proper notation to label your results.

(g) If t is any scalar, how is |tu| related to |u|?
(h) A unit vector is a vector whose magnitude is 1. Of the vectors i, j, and i + j, which are

unit vectors?

(i) Find a unit vector v whose direction is the same as u = 〈2, 3〉. (Hint: Consider the result
of part (g).)

C



16 9.3. THE DOT PRODUCT

9.3 The Dot Product

Preview Activity 9.3. For two-dimensional vectors u = 〈u1, u2〉 and v = 〈v1, v2〉, the dot product
is simply the scalar obtained by

u · v = u1v1 + u2v2.

(a) If u = 〈3, 4〉 and v = 〈−2, 1〉, find the dot product u · v.

(b) Find i · i and i · j.

(c) If u = 〈3, 4〉, find u · u. How is this related to |u|?

(d) On the axes in Figure 9.9, plot the vectors u = 〈1, 3〉 and v = 〈−3, 1〉. Then, find u ·v. What
is the angle between these vectors?

-4 -2 2 4

-4

-2

2

4

x

y

Figure 9.9: For part (d)

(e) On the axes in Figure 9.10, plot the vector u = 〈1, 3〉.

-4 -2 2 4

-4

-2

2

4

x

y

Figure 9.10: For part (e)

For each of the following vectors v, plot the vector on Figure 9.10 and then compute the
dot product u · v.



9.3. THE DOT PRODUCT 17

• v = 〈3, 2〉.
• v = 〈3, 0〉.
• v = 〈3,−1〉.
• v = 〈3,−2〉.
• v = 〈3,−4〉.

(f) Based upon the previous part of this activity, what do you think is the sign of the dot
product in the following three cases shown in Figure 9.11?

v

u

v

u

v

u

Figure 9.11: For part (f)

./



18 9.3. THE DOT PRODUCT

Activity 9.12.

Determine each of the following.

(a) 〈1, 2,−3〉 · 〈4,−2, 0〉.
(b) 〈0, 3,−2, 1〉 · 〈5,−6, 0, 4〉

C
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Activity 9.13.

Determine each of the following.

(a) The length of the vector u = 〈1, 2,−3〉 using the dot product.

(b) The angle between the vectors u = 〈1, 2〉 and v = 〈4,−1〉 to the nearest tenth of a
degree.

(c) The angle between the vectors y = 〈1, 2,−3〉 and z = 〈−2, 1, 1〉 to the nearest tenth of a
degree.

(d) If the angle between the vectors u and v is a right angle, what does the expression
u · v = |u||v| cos θ say about their dot product?

(e) If the angle between the vectors u and v is acute—that is, less than π/2—what does the
expression u · v = |u||v| cos θ say about their dot product?

(f) If the angle between the vectors u and v is obtuse—that is, greater than π/2—what does
the expression u · v = |u||v| cos θ say about their dot product?

C



20 9.3. THE DOT PRODUCT

Activity 9.14.

Determine the work done by a 25 pound force acting at a 30◦ angle to the direction of the
object’s motion, if the object is pulled 10 feet. In addition, is more work or less work done if the
angle to the direction of the object’s motion is 60◦?

C
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Activity 9.15.

Let u = 〈2, 6〉 and v = 〈4,−8〉. Find compvu, projvu and proj⊥vu, and draw a picture to
illustrate. Finally, express u as the sum of two vectors where one is parallel to v and the other
is perpendicular to v.

C
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9.4 The Cross Product

i

k

j

Figure 9.12: Basis vectors i, j, and k.

Preview Activity 9.4. The cross product of two vectors, u and v, will itself be a vector denoted
u× v. The direction of u× v is determined by the right-hand rule: if we point the index finger of
our right hand in the direction of u and our middle finger in the direction of v, then our thumb
points in the direction of u× v.

(a) We begin by defining the cross products using the vectors i, j, and k. Referring to Figure
9.12, explain why the definition i× j = k satisfies the right-hand rule.

(b) Now explain why the definition i× k = −j satisfies the right-hand rule.

(c) Continuing in this way, complete the missing entries in Table 9.4.

i× j = k i× k = −j j× k =

j× i = k× i = k× j =

Table 9.4: Table of cross products involving i, j, and k.

(d) Up to this point, the products you have seen, such as the product of real numbers and the
dot product of vectors, have been commutative, meaning that the product does not depend
on the order of the terms. For instance, 2 · 5 = 5 · 2. The table above suggests, however,
that the cross product is anti-commutative: for any vectors u and v in R3, u× v = −v × u.

If we consider the case when u = v, this shows that v × v = −v × v. What does this tell
us about v × v; in particular, what vector is unchanged by scalar multiplication by −1?

(e) The cross product is also a bilinear operation, meaning that it interacts with scalar multi-
plication and vector addition as one would expect: (cu + v) × w = c(u × w) + v × w.
Using this property along with Table 9.4, find the cross product u × v if u = 2i + 3j and
v = −i + k.
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(f) Verify that the cross product u×v you just found in part (e) is orthogonal to both u and v.

(g) Consider the vectors u and v in the xy-plane as shown below in Figure 9.13.

v

uθ x

y

Figure 9.13: Two vectors in the xy-plane

Explain why u = |u|i and v = |v| cos θi + |v| sin θj. Then compute the length of |u× v|.

(h) Multiplication of real numbers is associative, which means, for instance, that (2 · 5) · 3 =
2 · (5 · 3). Is it true that the cross product of vectors is associative? For instance, is it true
that (i× j)× j = i× (j× j)?

./



24 9.4. THE CROSS PRODUCT

Activity 9.16.

Suppose u = 〈2,−1, 0〉 and v = 〈0, 1, 3〉. Use the formula (??) for the following.

(a) Find the cross product u× v.

(b) Find the cross product u× i.

(c) Find the cross product u× u.

(d) Evaluate the dot products u · (u× v) and v · (u× v). What does this tell you about the
geometric relationship among u, v, and u× v?

C
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Activity 9.17.
(a) Find the area of the parallelogram formed by the vectors u = 〈1, 3,−2〉 and v = 〈3, 0, 1〉.
(b) Find the area of the parallelogram in R3 whose vertices are (1, 0, 1), (0, 0, 1), (2, 1, 0),

and (1, 1, 0).

C



26 9.4. THE CROSS PRODUCT

Activity 9.18.

Suppose u = 〈3, 5,−1〉 and v = 〈2,−2, 1〉.

(a) Find two unit vectors orthogonal to both u and v.

(b) Find the volume of the parallelepiped formed by the vector u, v, and w = 〈3, 3, 1〉.
(c) Find a vector orthogonal to the plane containing the points (0, 1, 2), (4, 1, 0), and (−2, 2, 2).

(d) Given the vectors u and v shown below in Figure 9.14, sketch the cross products u× v
and v × u.

x

y

z

u
v

Figure 9.14: Vectors u and v

(e) Do the vectors u = 〈1, 3,−2〉, v = 〈2, 1,−4〉, and w = 〈0, 1, 0〉 lie in the same plane? Use
the concepts from this section to explain.

C



9.5. LINES AND PLANES IN SPACE 27

9.5 Lines and Planes in Space

Preview Activity 9.5. We are familiar with equations of lines in the plane in the form y = mx+ b,
where m is the slope of the line and (0, b) is the y-intercept. In this activity, we explore a more
flexible way of representing lines that we can use not only in the plane, but in higher dimensions
as well.

To begin, consider the line through the point (2,−1) with slope 2
3 .

-2 -1 1 2 3 4

-4

-3

-2

-1

1

2

x

y

(a) Suppose we increase x by 1 from the point (2,−1). How does the y-value change? What is
the point on the line with x-coordinate 3?

(b) Suppose we decrease x by 3.25 from the point (2,−1). How does the y-value change? What
is the point on the line with x-coordinate −1.25?

(c) Now, suppose we increase x by some arbitrary value 3t from the point (2,−1). How does
the y-value change? What is the point on the line with x-coordinate 2 + 3t?

(d) Observe that the slope of the line is related to any vector whose y-component divided by
the x-component is the slope of the line. For the line in this exercise, we might use the
vector 〈3, 2〉, which describes the direction of the line. Explain why the terminal points of
the vectors r(t), where

r(t) = 〈2,−1〉+ 〈3, 2〉t,
trace out the graph of the line through the point (2,−1) with slope 2

3 .

(e) Now we extend this vector approach to R3 and consider a second example. Let L be the
line in R3 through the point (1, 0, 2) in the direction of the vector 〈2,−1, 4〉.
Find the coordinates of three distinct points on line L. Explain your thinking.

(f) Find a vector in form
r(t) = 〈x0, y0, z0〉+ 〈a, b, c〉t

whose terminal points trace out the line L that is described in (e). That is, you should be
able to locate any point on the line by determining a corresponding value of t.

./
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Figure 9.15: A line in 3-space.

Activity 9.19.

Let P1 = (1, 2,−1) and P2 = (−2, 1,−2). Let L be the line in R3 through P1 and P2, and note
that three snapshots of this line are shown in Figure 9.15.

(a) Find a direction vector for the line L.

(b) Find a vector equation of L in the form r(t) = r0 + tv.

(c) Consider the vector equation s(t) = 〈−5, 0,−3〉 + t〈6, 2, 2〉. What is the direction of the
line given by s(t)? Is this new line parallel to line L?

(d) Do r(t) and s(t) represent the same line, L? Explain.

C
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Activity 9.20.

Let P1 = (1, 2,−1) and P2 = (−2, 1,−2), and let L be the line in R3 through P1 and P2, which is
the same line as in Activity 9.19.

(a) Find the parametric equations of the line L.

(b) Does the point (1, 2, 1) lie on L? If so, what value of t results in this point?

(c) Consider another line, K, whose parametric equations are

x(s) = −2 + 4s, y(s) = 1− 3s, −2 + 2s.

What is the direction of line K?

(d) Do linesL andK intersect? If so, provide the point of intersection and the t and s values,
respectively, that result in the point. If not, explain why.

C
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Activity 9.21.
(a) Write the equation of the plane p1 passing through the point (0, 2, 4) and perpendicular

to the vector n = 〈2,−1, 1〉.
(b) Is the point (2, 0, 2) on the plane p1?

(c) Write the equation of the plane p2 that is parallel to p1 and passing through the point
(3, 0, 4).

(d) Write the parametric description of the line l passing through the point (2, 0, 2) and
perpendicular to the plane p3 described the equation x+ 2y − 2z = 7.

(e) Find the point at which l intersects the plane p3.

C
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Activity 9.22.

Let P0 = (1, 2,−1), P1 = (1, 0,−1), and P2 = (0, 1, 3) and let p be the plane containing P0, P1,
and P2.

(a) Determine the components of the vectors
−−−→
P0P1 and

−−−→
P0P2.

(b) Find a normal vector n to the plane p.

(c) Find the scalar equation of the plane p.

(d) Consider a second plane, q, whose scalar equation is−3(x−1) + 4(y+ 3) + 2(z−5) = 0.
Find two different points on plane q, as well as a vector m that is normal to q.

(e) We define the angle between two planes to be the angle between their respective normal
vectors. What is the angle between planes p and q?

C
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9.6 Vector-Valued Functions

Preview Activity 9.6. In this activity we consider how we might use vectors to define a curve in
space.

(a) On a single set of axes in R2, draw the vectors 〈cos(0), sin(0)〉,
〈
cos
(
π
2

)
, sin

(
π
2

)〉
,

〈cos (π) , sin (π)〉, and
〈
cos
(

3π
2

)
, sin

(
3π
2

)〉
with their initial points at the origin.

(b) On the same set of axes, draw the vectors
〈
cos
(
π
4

)
, sin

(
π
4

)〉
,
〈
cos
(

3π
4

)
, sin

(
3π
4

)〉
,〈

cos
(

5π
4

)
, sin

(
5π
4

)〉
, and

〈
cos
(

7π
4

)
, sin

(
7π
4

)〉
with their initial points at the origin.

(c) Based on the pictures from parts (a) and (b), sketch the set of terminal points of all of
the vectors of the form 〈cos(t), sin(t)〉, where t assumes values from 0 to 2π. What is the
resulting figure? Why?

./
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Activity 9.23.

The same curve can be represented with different parameterizations. Use your calculator,2

Wolfram|Alpha, or some other graphing device3 to plot the curves generated by the following
vector-valued functions. Compare and contrast the graphs – explain how they are alike and
how they are different.

(a) r(t) = 〈sin(t), cos(t)〉
(b) r(t) = 〈sin(2t), cos(2t)〉
(c) r(t) = 〈cos(t+ π), sin(t+ π)〉

C

2If you have a graphing calculator you can draw graphs of vector-valued functions in R2 using the parametric mode
(often found in the MODE menu).

3e.g., http://webspace.ship.edu/msrenault/ggb/parametric_grapher.html

http://webspace.ship.edu/msrenault/ggb/parametric_grapher.html
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Activity 9.24.

Vector-valued functions can be used to generate many interesting curves. Graph each of the
following using an appropriate tool4, and then write one sentence for each function to describe
the behavior of the resulting curve.

(a) r(t) = 〈t cos(t), t sin(t)〉
(b) r(t) = 〈sin(t) cos(t), t sin(t)〉
(c) r(t) = 〈t2 sin(t) cos(t), 0.9t cos(t2), sin(t)〉
(d) r(t) = 〈sin(5t), sin(4t)〉
(e) Experiment with different formulas for x(t) and y(t) and ranges for t to see what other

interesting curves you can generate. Share your best results with peers.

C

4e.g., the 2D grapher at http://webspace.ship.edu/msrenault/ggb/parametric_grapher.html, or
for 3D graphs Wolfram|Alpha, an on-line 3D grapher like http://www.math.uri.edu/˜bkaskosz/flashmo/
parcur/, or some other device

http://webspace.ship.edu/msrenault/ggb/parametric_grapher.html
http://www.math.uri.edu/~bkaskosz/flashmo/parcur/
http://www.math.uri.edu/~bkaskosz/flashmo/parcur/
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Activity 9.25.

Consider the paraboloid defined by f(x, y) = x2 + y2.

(a) Find a parameterization for the x = 2 trace of f . What type of curve does this trace
describe?

(b) Find a parameterization for the y = −1 trace of f . What type of curve does this trace
describe?

(c) Find a parameterization for the level curve f(x, y) = 25. What type of curve does this
trace describe?

(d) How do your responses change to all three of the preceding question if you instead
consider the function g defined by g(x, y) = x2 − y2? (Hint for generating one of the
parameterizations: sec2(t)− tan2(t) = 1.)

C
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9.7 Derivatives and Integrals of Vector-Valued Functions

Preview Activity 9.7. Let r(t) = cos(t)i+ sin(2t)j describe the path traveled by an object at time t.

(a) Use appropriate technology to help you sketch the graph of the vector-valued function
r(t), and then locate and label the point on the graph when t = π.

(b) Recall that for functions of a single variable, the derivative of a sum is the sum of the
derivatives; that is, d

dx [f(x) + g(x)] = f ′(x) + g′(x). With this idea in mind and viewing i
and j as constant vectors, what do you expect the derivative of r to be? Write a proposed
formula for r′(t).

(c) Use your result from part (b) to compute r′(π). Sketch this vector r′(π) as emanating from
the point on the graph when t = π , and explain what you think r′(π) tells us about the
object’s motion.

./
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Activity 9.26.

Let’s investigate how we can interpret the derivative r′(t). Let r be the vector-valued function
whose graph is shown in Figure 9.16, and let h be a scalar that represents a small change in
time. The vector r(t) is the blue vector in Figure 9.16 and r(t+ h) is the green vector.

r(t)

r(t+ h)

Figure 9.16: A single difference quotient.

(a) Is the quantity r(t+ h)− r(t) a vector or a scalar? Identify this object in Figure 9.16.

(b) Is r(t+h)−r(t)
h a vector or a scalar? Sketch a representative vector r(t+h)−r(t)

h with h < 1 in
Figure 9.16.

(c) Think of r(t) as providing the position of an object moving along the curve these vectors
trace out. What do you think that the vector r(t+h)−r(t)

h measures? Why? (Hint: You
might think analogously about difference quotients such as f(x+h)−f(x)

h or s(t+h)−s(t)
h

from calculus I.)

(d) Figure 9.17 presents three snapshots of the vectors r(t+h)−r(t)
h as we let h→ 0. Write 2-3

sentences to describe key attributes of the vector

lim
h→0

r(t+ h)− r(t)

h
.

(Hint: Compare to limits such as limh→0
f(x+h)−f(x)

h or limh→0
s(t+h)−s(t)

h from calculus
I, keeping in mind that in three dimensions there is no general concept of slope.)

C
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r(t)

r(t+ h)

r(t)

r(t+ h)

r(t)

r(t+ h)

Figure 9.17: Snapshots of several difference quotients.

Activity 9.27.

For each of the following vector-valued functions, find r′(t).

(a) r(t) = 〈cos(t), t sin(t), ln(t)〉.
(b) r(t) = 〈t2 + 3t, e−2t, t

t2+1
〉.

(c) r(t) = 〈tan(t), cos(t2), te−t〉.
(d) r(t) = 〈

√
t4 + 4, sin(3t), cos(4t)〉.

C
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Activity 9.28.

The left side of figure 9.18 shows the curve described by the vector-valued function

r(t) =

〈
2t− 1

2
t2 + 1, t− 1

〉
.
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Figure 9.18: The curve r(t) =
〈
2t− 1

2 t
2 + 1, t− 1

〉
and its speed.

(a) Find the object’s velocity v(t).

(b) Find the object’s acceleration a(t).

(c) Indicate on the left of Figure 9.18 the object’s position, velocity and acceleration at the
times t = 0, 2, 4. Draw the velocity and acceleration vectors with their tails placed at the
object’s position.

(d) Recall that the speed is |v| = √v · v. Find the object’s speed and graph it as a function
of time t on the right of Figure 9.18. When is the object’s speed the slowest? When is
the speed increasing? When it is decreasing?

(e) What seems to be true about the angle between v and a when the speed is at a min-
imum? What is the angle between v and a when the speed is increasing? when the
speed is decreasing?

(f) Since the square root is an increasing function, we see that the speed increases precisely
when v · v is increasing. Use the product rule for the dot product to express d

dt(v · v)
in terms of the velocity v and acceleration a. Use this to explain why the speed is
increasing when v · a > 0 and decreasing when v · a < 0. Compare this to part (d).

(g) Show that the speed’s rate of change is

d

dt
|v(t)| = compva.

C
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Activity 9.29.

Let
r(t) = cos(t)i− sin(t)j + tk.5

(a) Determine the coordinates of the point on the curve traced out by r(t) when t = π.

(b) Find a direction vector for the line tangent to the graph of r at the point where t = π.

(c) Find the parametric equations of the line tangent to the graph of r when t = π.

(d) Sketch a plot of the curve r(t) and its tangent line near the point where t = π. In
addition, include a sketch of r′(π). What is the important role of r′(π) in this activity?

C

5You can sketch the graph with Wolfram Alpha, the applet at http://gvsu.edu/s/LR, or some other appropriate
technology.

http://gvsu.edu/s/LR
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Activity 9.30.

Suppose a moving object in space has its velocity given by

v(t) = (−2 sin(2t))i + (2 cos(t))j +

(
1− 1

1 + t

)
k.

A graph of the position of the object for times t in [−0.5, 3] is shown in Figure 9.19. Suppose
further that the object is at the point (1.5,−1, 0) at time t = 0.

(a) Determine a(t), the acceleration of the object at time t.

(b) Determine r(t), position of the object at time t.

(c) Compute and sketch the position, velocity, and acceleration vectors of the object at time
t = 1, using Figure 9.19.

(d) Finally, determine the vector equation for the tangent line, L(t), that is tangent to the
position curve at t = 1.
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Figure 9.19: The position graph for the function in Activity 9.30.

C
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9.8 Arc Length and Curvature

Preview Activity 9.8. In earlier investigations, we have used integration to calculate quantities
such as area, volume, mass, and work. We are now interested in determining the length of a space
curve.

Consider the smooth curve in 3-space defined by the vector-valued function

r(t) = 〈x(t), y(t), z(t)〉 = 〈cos(t), sin(t), t〉

for t in the interval [0, 2π]. Pictures of the graph of r are shown in Figure 9.20. We will use the
integration process to calculate the length of this curve. In this situation we partition the interval
[0, 2π] into n subintervals of equal length and let 0 = t0 < t1 < t2 < · · · < tn = b be the endpoints
of the subintervals. We then approximate the length of the curve on each subinterval with some
related quantity that we can compute. In this case, we approximate the length of the curve on
each subinterval with the length of the segment connecting the endpoints. Figure 9.20 illustrates
the process in three different instances using increasing values of n.
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Estimate: 8.80

Figure 9.20: Approximating the length of the curve with n = 3, n = 6, and n = 9.

(a) Write a formula for the length of the line segment that connects the endpoints of the curve
on the ith subinterval [ti−1, ti]. (This length is our approximation of the length of the curve
on this interval.)

(b) Use your formula in part (a) to write a sum that adds all of the approximations to the
lengths on each subinterval.

(c) What do we need to do with the sum in part (b) in order to obtain the exact value of the
length of the graph of r(t) on the interval [0, 2π]?

./
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Activity 9.31.

Here we calculate the arc length of two familiar curves.

(a) Use Equation (??) to calculate the circumference of a circle of radius r.

(b) Find the exact length of the spiral defined by r(t) = 〈cos(t), sin(t), t〉 on the interval
[0, 2π].

C
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Activity 9.32.

Let y = f(x) define a smooth curve in 2-space. Parameterize this curve and use Equation (??)
to show that the length of the curve define by f on an interval [a, b] is∫ b

a

√
1 + [f ′(t)]2 dt.

C
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Activity 9.33.

In this activity we parameterize a line in 2-space in terms of arc length. Consider the line with
parametric equations

x(t) = x0 + at and y(t) = y0 + bt.

(a) To write t in terms of s, evaluate the integral

s = L(t) =

∫ t

0

√
(x′(w))2 + (y′(w))2 dw

to determine the length of the line from time 0 to time t.

(b) Use the formula from (a) for s in terms of t to write t in terms of s. Then explain why a
parameterization of the line in terms of arc length is

x(s) = x0 +
a√

a2 + b2
s and y(s) = y0 +

b√
a2 + b2

s. (9.2)

C
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Activity 9.34.

Recall that an arc length parameterization of a circle in 2-space of radius a centered at the origin
is, from (??),

r(s) =
〈
a cos

(s
a

)
, a sin

(s
a

)〉
.

Show that the curvature of this circle is the constant 1
a . What can you say about the relationship

between the size of the radius of a circle and the value of its curvature? Why does this make
sense?

C
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Activity 9.35.

Use one of the two formulas for κ in terms of t to help you answer the following questions.

(a) The ellipse x2

a2
+ y2

b2
= 1 has parameterization

r(t) = 〈a cos(t), b sin(t)〉.

Find the curvature of the ellipse. Assuming 0 < b < a, at what points is the curvature
the greatest and at what points is the curvature the smallest? Does this agree with your
intuition?

(b) The standard helix has parameterization r(t) = cos(t)i+ sin(t)j+ tk. Find the curvature
of the helix. Does the result agree with your intuition?

C
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Chapter 10

Derivatives of Multivariable Functions

10.1 Limits

Preview Activity 10.1. We investigate the limits of several different functions by working with
tables and graphs.

(a) Consider the function f defined by

f(x) = 3− x.

Complete the following table of values.

x f(x)

-0.2
-0.1
0.0
0.1
0.2

What does the table suggest regarding limx→0 f(x)?

(b) Explain how your results in (a) are reflected in Figure 10.1.

(c) Next, consider

g(x) =
x

|x| .

Complete the following table of values near x = 0, the point at which g is not defined.

49
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y

Figure 10.1: The graph of f(x) = 3− x.

x g(x)

-0.1
-0.01

-0.001
0.001

0.01
0.1

What does this suggest about limx→0 g(x)?

(d) Explain how your results in (c) are reflected in Figure 10.2.

-1 1

-1

1

Figure 10.2: The graph of g(x) = x
|x| .

(e) Now, let’s examine a function of two variables. Let

f(x, y) = 3− x− 2y

and complete the following table of values.
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x\y −1 −0.1 0 0.1 1
−1

−0.1

0
0.1

1

What does the table suggest about lim(x,y)→(0,0) f(x, y)?

(f) Explain how your results in (e) are reflected in Figure 10.3. Compare this limit to the limit
in part (a). How are the limits similar and how are they different?

3

1.5

3

x

y

z

0.5 1.0 1.5

0.5

1.0

1.5

x

y

Figure 10.3: At left, the graph of f(x, y) = 3− x− 2y; at right, its contour plot.

(g) Finally, consider

g(x, y) =
2xy

x2 + y2
,

which is not defined at (0, 0), and complete the following table of values of g(x, y).

x\y −1 −0.1 0 0.1 1
−1

−0.1

0 —
0.1

1

What does this suggest about the lim(x,y)→(0,0) g(x, y)?

(h) Explain how your results are reflected in Figure 10.4. Compare this limit to the limit in
part (b). How are the results similar and how are they different?

./
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-1
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-1 0 1
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0

1

x

y

z x

y

Figure 10.4: At left, the graph of g(x, y) = 2xy
x2+y2

; at right, its contour plot.
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Activity 10.1.

Consider the function f , defined by

f(x, y) =
y√

x2 + y2
,

whose graph is shown below in Figure 10.5

-1

0

-1 0 1
-1

0

1

x

y

z

Figure 10.5: The graph of f(x, y) = y√
x2+y2

.

(a) Is f defined at the point (0, 0)? What, if anything, does this say about whether f has a
limit at the point (0, 0)?

(b) Values of f (to three decimal places) at several points close to (0, 0) are shown in the
table below.

x\y -1 -0.1 0 0.1 1
−1 −0.707 — 0 — 0.707

−0.1 — −0.707 0 0.707 —
0 −1 −1 — 1 1

0.1 — −0.707 0 0.707 —
1 −0.707 — 0 — 0.707

Based on these calculations, state whether f has a limit at (0, 0) and give an argument
supporting your statement. (Hint: The blank spaces in the table are there to help you
see the patterns.)

(c) Now let’s consider what happens if we restrict our attention to the x-axis; that is, con-
sider what happens when y = 0. What is the behavior of f(x, 0) as x → 0? If we
approach (0, 0) by moving along the x-axis, what value do we find as the limit?

(d) What is the behavior of f along the line y = x when x > 0; that is, what is the value of
f(x, x) when x > 0? If we approach (0, 0) by moving along the line y = x in the first
quadrant (thus considering f(x, x) as x→ 0, what value do we find as the limit?
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(e) In general, if lim(x,y)→(0,0) f(x, y) = L, then f(x, y) approaches L as (x, y) approaches
(0, 0), regardless of the path we take in letting (x, y)→ (0, 0). Explain what the last two
parts of this activity imply about the existence of lim(x,y)→(0,0) f(x, y).

(f) Shown below in Figure 10.6 is a set of contour lines of the function f . What is the
behavior of f(x, y) as (x, y) approaches (0, 0) along any straight line? How does this
observation reinforce your conclusion about the existence of lim(x,y)→(0,0) f(x, y) from
the previous part of this activity?(Hint: Use the fact that a non-vertical line has equation
y = mx for some constant m.)

x

y

Figure 10.6: Contour lines of f(x, y) = y√
x2+y2

.

C
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Activity 10.2.

Let’s consider the function g defined by

g(x, y) =
x2y

x4 + y2

and investigate the limit lim(x,y)→(0,0) g(x, y).

(a) What is the behavior of g on the x-axis? That is, what is g(x, 0) and what is the limit of
g as (x, y) approaches (0, 0) along the x-axis?

(b) What is the behavior of g on the y-axis? That is, what is g(0, y) and what is the limit of
g as (x, y) approaches (0, 0) along the y-axis?

(c) What is the behavior of g on the line y = mx? That is, what is g(x,mx) and what is the
limit of g as (x, y) approaches (0, 0) along the line y = mx?

(d) Based on what you have seen so far, do you think lim(x,y)→(0,0) g(x, y) exists? If so, what
do you think its value is?

(e) Now consider the behavior of g on the parabola y = x2? What is g(x, x2) and what is
the limit of g as (x, y) approaches (0, 0) along this parabola?

(f) State whether the limit lim(x,y)→(0,0) g(x, y) exists or not and provide a justification of
your statement.

C
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10.2 First-Order Partial Derivatives

Preview Activity 10.2. Let’s return to the function we considered in Preview Activity 9.1. Suppose
we take out a $18,000 car loan at interest rate r and we agree to pay off the loan in t years. The
monthly payment, in dollars, is

M(r, t) =
1500r

1−
(
1 + r

12

)−12t .

(a) What is the monthly payment if the interest rate is r = 3% = 0.03, and we pay the loan off
in t = 4 years?

(b) Suppose the interest rate is fixed at r = 3% = 0.03. Express M as a function f of t alone
using r = 0.03. That is, let f(t) = M(0.03, t). Sketch the graph of f on the left of Figure
10.7. Explain the meaning of the function f .
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Figure 10.7: The graphs of f(t) = M(0.03, t) and g(r) = M(r, 4).

(c) Find the instantaneous rate of change f ′(4) and state the units on this quantity. What
information does f ′(4) tell us about our car loan? What information does f ′(4) tell us
about the graph you sketched in (b)?

(d) Express M as a function of r alone, using a fixed time of t = 4. That is, let g(r) = M(r, 4).
Sketch the graph of g on the right of Figure 10.7. Explain the meaning of the function g.

(e) Find the instantaneous rate of change g′(0.03) and state the units on this quantity. What
information does g′(0.03) tell us about our car loan? What information does g′(0.03) tell us
about the graph you sketched in (d)?

./
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Activity 10.3.

Consider the function f defined by

f(x, y) =
xy2

x+ 1

at the point (1, 2).

(a) Write the trace f(x, 2) at the fixed value y = 2. On the left side of Figure 10.8, draw the
graph of the trace with y = 2 indicating the scale and labels on the axes. Also, sketch
the tangent line at the point x = 1.

Figure 10.8: Traces of f(x, y) = xy2

x+1 .

(b) Find the partial derivative fx(1, 2) and relate its value to the sketch you just made.

(c) Write the trace f(1, y) at the fixed value x = 1. On the right side of Figure 10.8, draw the
graph of the trace with x = 1 indicating the scale and labels on the axes. Also, sketch
the tangent line at the point y = 2.

(d) Find the partial derivative fy(1, 2) and relate its value to the sketch you just made.

C
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Activity 10.4.
(a) If we have the function f of the variables x and y and we want to find the partial deriva-

tive fx, which variable do we treat as a constant? When we find the partial derivative
fy, which variable do we treat as a constant?

(b) If f(x, y) = 3x3 − 2x2y5, find the partial derivatives fx and fy.

(c) If f(x, y) =
xy2

x+ 1
, find the partial derivatives fx and fy.

(d) If g(r, s) = rs cos(r), find the partial derivatives gr and gs.

(e) Assuming f(w, x, y) = (6w + 1) cos(3x2 + 4xy3 + y), find the partial derivatives fw, fx,
and fy.

(f) Find all possible first-order partial derivatives of q(x, t, z) =
x2tz3

1 + x2
.

C
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Activity 10.5.

The speed of sound C traveling through ocean water is a function of temperature, salinity and
depth. It may be modeled by the function

C = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.01T )(S − 35) + 0.016D.

Here C is the speed of sound in meters/second, T is the temperature in degrees Celsius, S is
the salinity in grams/liter of water, and D is the depth below the ocean surface in meters.

(a) State the units in which each of the partial derivatives, CT , CS and CD, are expressed
and explain the physical meaning of each.

(b) Find the partial derivatives CT , CS and CD.

(c) Evaluate each of the three partial derivatives at the point where T = 10, S = 35 and
D = 100. What does the sign of each partial derivatives tell us about the behavior of the
function C at the point (10, 35, 100)?

C
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Activity 10.6.

The wind chill, as frequently reported, is a measure of how cold it feels outside when the wind
is blowing. In Table 10.2, the wind chill w, measured in degrees Fahrenheit, is a function of the
wind speed v, measured in miles per hour, and the ambient air temperature T , also measured
in degrees Fahrenheit. We thus view w as being of the form w = w(v, T ).

v\T -30 -25 -20 -15 -10 -5 0 5 10 15 20
5 -46 -40 -34 -28 -22 -16 -11 -5 1 7 13

10 -53 -47 -41 -35 -28 -22 -16 -10 -4 3 9
15 -58 -51 -45 -39 -32 -26 -19 -13 -7 0 6
20 -61 -55 -48 -42 -35 -29 -22 -15 -9 -2 4
25 -64 -58 -51 -44 -37 -31 -24 -17 -11 -4 3
30 -67 -60 -53 -46 -39 -33 -26 -19 -12 -5 1
35 -69 -62 -55 -48 -41 -34 -27 -21 -14 -7 0
40 -71 -64 -57 -50 -43 -36 -29 -22 -15 -8 -1

Table 10.1: Wind chill as a function of wind speed and temperature.

(a) Estimate the partial derivative wv(20,−10). What are the units on this quantity and
what does it mean?

(b) Estimate the partial derivative wT (20,−10). What are the units on this quantity and
what does it mean?

(c) Use your results to estimate the wind chill w(18,−10).

(d) Use your results to estimate the wind chill w(20,−12).

(e) Use your results to estimate the wind chill w(18,−12).

C
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Activity 10.7.

Shown below in Figure 10.9 is a contour plot of a function f . The value of the function along a
few of the contours is indicated to the left of the figure.
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Figure 10.9: A contour plot of f .

(a) Estimate the partial derivative fx(−2,−1).

(b) Estimate the partial derivative fy(−2,−1).

(c) Estimate the partial derivatives fx(−1, 2) and fy(−1, 2).

(d) Locate one point (x, y) where the partial derivative fx(x, y) = 0.

(e) Locate one point (x, y) where fx(x, y) < 0.

(f) Locate one point (x, y) where fy(x, y) > 0.

(g) Suppose you have a different function g, and you know that g(2, 2) = 4, gx(2, 2) > 0,
and gy(2, 2) > 0. Using this information, sketch a possibility for the contour g(x, y) = 4
passing through (2, 2) on the left side of Figure 10.10. Then include possible contours
g(x, y) = 3 and g(x, y) = 5.

(h) Suppose you have yet another function h, and you know that h(2, 2) = 4, hx(2, 2) < 0,
and hy(2, 2) > 0. Using this information, sketch a possible contour h(x, y) = 4 passing
through (2, 2) on the right side of Figure 10.10. Then include possible contours h(x, y) =
3 and h(x, y) = 5.

C
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Figure 10.10: Plots for contours of g and h.
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10.3 Second-Order Partial Derivatives

Preview Activity 10.3. Once again, let’s consider the function f defined by f(x, y) = x2 sin(2y)
32 that
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Figure 10.11: The range function with traces y = 0.6 and x = 150.

measures a projectile’s range as a function of its initial speed x and launch angle y. The graph of
this function, including traces with x = 150 and y = 0.6, is shown in Figure 10.11.

(a) Compute the partial derivative fx and notice that fx itself is a new function of x and y.

(b) We may now compute the partial derivatives of fx. Find the partial derivative fxx = (fx)x
and evaluate fxx(150, 0.6).

(c) Figure 10.12 shows the trace of f with y = 0.6 with three tangent lines included. Explain
how your result from part (b) of this preview activity is reflected in this figure.
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Figure 10.12: The trace with y = 0.6.

(d) Determine the partial derivative fy, and then find the partial derivative fyy = (fy)y. Eval-
uate fyy(150, 0.6).
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Figure 10.13: More traces of the range function.

(e) Figure 10.13 shows the trace f(150, y) and includes three tangent lines. Explain how the
value of fyy(150, 0.6) is reflected in this figure.

(f) Because fx and fy are each functions of both x and y, they each have two partial deriva-
tives. Not only can we compute fxx = (fx)x, but also fxy = (fx)y; likewise, in addition to
fyy = (fy)y, but also fyx = (fy)x. For the range function f(x, y) = x2 sin(2y)

32 , use your earlier
computations of fx and fy to now determine fxy and fyx. Write one sentence to explain
how you calculated these “mixed” partial derivatives.

./
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Activity 10.8.

Find all second order partial derivatives of the following functions. For each partial derivative
you calculate, state explicitly which variable is being held constant.

(a) f(x, y) = x2y3

(b) f(x, y) = y cos(x)

(c) g(s, t) = st3 + s4

(d) How many second order partial derivatives does the function h defined by h(x, y, z) =
9x9z − xyz9 + 9 have? Find hxz and hzx.

C
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Activity 10.9.

We continue to consider the function f defined by f(x, y) = sin(x)e−y.

(a) In Figure 10.14, we see the trace of f(x, y) = sin(x)e−y that has x held constant with
x = 1.75. Write a couple of sentences that describe whether the slope of the tangent
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Figure 10.14: The tangent lines to a trace with increasing y.

lines to this curve increase or decrease as y increases, and, after computing fyy(x, y),
explain how this observation is related to the value of fyy(1.75, y). Be sure to address
the notion of concavity in your response.

(b) In Figure 10.15, we start to think about the mixed partial derivative, fxy. Here, we
first hold y constant to generate the first-order partial derivative fx, and then we hold x
constant to compute fxy. This leads to first thinking about a trace with x being constant,
followed by slopes of tangent lines in the y-direction that slide along the original trace.
You might think of sliding your pencil down the trace with x constant in a way that
its slope indicates (fx)y in order to further animate the three snapshots shown in the
figure. Based on Figure 10.15, is fxy(1.75,−1.5) positive or negative? Why?

(c) Determine the formula for fxy(x, y), and hence evaluate fxy(1.75,−1.5). How does this
value compare with your observations in (b)?

(d) We know that fxx(1.75,−1.5) measures the concavity of the y = −1.5 trace, and that
fyy(1.75,−1.5) measures the concavity of the x = 1.75 trace. What do you think fxy(1.75,−1.5)
measures?

(e) On Figure 10.15, sketch the trace with y = −1.5, and sketch three tangent lines whose
slopes correspond to the value of fyx(x,−1.5) for three different values of x, the mid-
dle of which is x = −1.5. Is fyx(1.75,−1.5) positive or negative? Why? What does
fyx(1.75,−1.5) measure?

C
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Figure 10.15: The trace of z = f(x, y) = sin(x)e−y with x = 1.75, along with tangent lines in the
y-direction at three different points.
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Activity 10.10.

As we saw in Activity 10.6, the wind chill w(v, T ), in degrees Fahrenheit, is a function of the
wind speed, in miles per hour, and the air temperature, in degrees Fahrenheit. Some values of
the wind chill are recorded in Table 10.2.

v\T -30 -25 -20 -15 -10 -5 0 5 10 15 20
5 -46 -40 -34 -28 -22 -16 -11 -5 1 7 13

10 -53 -47 -41 -35 -28 -22 -16 -10 -4 3 9
15 -58 -51 -45 -39 -32 -26 -19 -13 -7 0 6
20 -61 -55 -48 -42 -35 -29 -22 -15 -9 -2 4
25 -64 -58 -51 -44 -37 -31 -24 -17 -11 -4 3
30 -67 -60 -53 -46 -39 -33 -26 -19 -12 -5 1
35 -69 -62 -55 -48 -41 -34 -27 -21 -14 -7 0
40 -71 -64 -57 -50 -43 -36 -29 -22 -15 -8 -1

Table 10.2: Wind chill as a function of wind speed and temperature.

(a) Estimate the partial derivatives wT (20,−15), wT (20,−10), and wT (20,−5). Use these
results to estimate the second-order partial wTT (20,−10).

(b) In a similar way, estimate the second-order partial wvv(20,−10).

(c) Estimate the partial derivatives wT (20,−10), wT (25,−10), and wT (15,−10), and use
your results to estimate the partial wTv(20,−10).

(d) In a similar way, estimate the partial derivative wvT (20,−10).

(e) Write several sentences that explain what the values wTT (20,−10), wvv(20,−10), and
wTv(20,−10) indicate regarding the behavior of w(v, T ).

C
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10.4 Linearization: Tangent Planes and Differentials

Preview Activity 10.4. Let f(x, y) = 6− x2

2 − y2, and let (x0, y0) = (1, 1).

(a) Evaluate the function f(x, y) = 6 − x2

2 − y2 and its partial derivatives at (x0, y0); that is,
find f(1, 1), fx(1, 1), and fy(1, 1).

(b) We know one point on the tangent plane; namely, the z-value of the tangent plane agrees
with the z-value on the graph of the function f(x, y) = 6− x2

2 −y2 at the point (x0, y0). Use
this observation to determine z0 in the expression z = z0 + a(x− x0) + b(y − y0).

(c) Sketch the traces of the function f(x, y) = 6− x2

2 − y2 for y = y0 = 1 and x = x0 = 1 below
in Figure 10.16.
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Figure 10.16: The traces of f(x, y) with y = y0 = 1 and x = x0 = 1.

(d) Determine the equation of the tangent line of the trace with y = 1 at the point x0 = 1.
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Figure 10.17: The traces of f(x, y) and the tangent plane.
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(e) Figure 10.17 shows the traces of the function and the traces of the tangent plane. Explain
how the tangent line of the trace of f , whose equation you found in the last part of this
activity, is related to the tangent plane. How does this observation help you determine the
constant a in the expression for the tangent plane z = z0 + a(x − x0) + b(y − y0)? (Hint:
How do you think fx(x0, y0) should be related to zx(x0, y0)?)

(f) In a similar way to what you did in (d), determine the equation of the tangent line of
the trace with x = 1 at the point y0 = 1. Explain how this tangent line is related to the
tangent plane, and use this observation to determine the constant b in the expression for
the tangent plane z = z0 +a(x−x0) + b(y−y0). (Hint: How do you think fy(x0, y0) should
be related to zy(x0, y0)?)

(g) Finally, write the equation z = z0 + a(x− x0) + b(y − y0) of the tangent plane to the graph
of f(x, y) = 6− x2/2− y2 at the point (x0, y0) = (1, 1).

C
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Activity 10.11.

Find the equation of the tangent plane to f(x, y) = x2y at the point (1, 2).

C



72 10.4. LINEARIZATION: TANGENT PLANES AND DIFFERENTIALS

Activity 10.12.

In what follows, we find the linearization of several different functions that are given in alge-
braic, tabular, or graphical form.

(a) Find the linearization L(x, y) for the function g defined by

g(x, y) =
x

x2 + y2

at the point (1, 2). Then use the linearization to estimate the value of g(0.8, 2.3).

(b) Table 10.3 provides a collection of values of the wind chill w(v, T ), in degrees Fahren-
heit, as a function of wind speed, in miles per hour, and temperature, also in degrees
Fahrenheit.

v\T -30 -25 -20 -15 -10 -5 0 5 10 15 20
5 -46 -40 -34 -28 -22 -16 -11 -5 1 7 13

10 -53 -47 -41 -35 -28 -22 -16 -10 -4 3 9
15 -58 -51 -45 -39 -32 -26 -19 -13 -7 0 6
20 -61 -55 -48 -42 -35 -29 -22 -15 -9 -2 4
25 -64 -58 -51 -44 -37 -31 -24 -17 -11 -4 3
30 -67 -60 -53 -46 -39 -33 -26 -19 -12 -5 1
35 -69 -62 -55 -48 -41 -34 -27 -21 -14 -7 0
40 -71 -64 -57 -50 -43 -36 -29 -22 -15 -8 -1

Table 10.3: Wind chill as a function of wind speed and temperature.

Use the data to first estimate the appropriate partial derivatives, and then find the
linearization L(v, T ) at the point (25,−10). Finally, use the linearization to estimate
w(25,−12), w(23,−10), and w(23,−12).

(c) Figure 10.18 gives a contour plot of a differentiable function f .
After estimating appropriate partial derivatives, determine the linearization L(x, y) at
the point (2, 1), and use it to estimate f(2.2, 1), f(2, 0.8), and f(2.2, 0.8).

C
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Figure 10.18: A contour plot of f(x, y).
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Activity 10.13.

The questions in this activity explore the differential in several different contexts.

(a) Suppose that the elevation of a landscape is given by the function h, where we addi-
tionally know that h(3, 1) = 4.35, hx(3, 1) = 0.27, and hy(3, 1) = −0.19. Assume that x
and y are measured in miles in the easterly and northerly directions, respectively, from
some base point (0, 0).
Your GPS device says that you are currently at the point (3, 1). However, you know
that the coordinates are only accurate to within 0.2 units; that is, dx = ∆x = 0.2 and
dy = ∆y = 0.2. Estimate the uncertainty in your elevation using differentials.

(b) The pressure, volume, and temperature of an ideal gas are related by the equation

P = P (T, V ) = 8.31T/V,

where P is measured in kilopascals, V in liters, and T in kelvin. Find the pressure
when the volume is 12 liters and the temperature is 310 K. Use differentials to estimate
the change in the pressure when the volume increases to 12.3 liters and the temperature
decreases to 305 K.

(c) Refer to Table 10.3, the table of values of the wind chill w(v, T ), in degrees Fahrenheit,
as a function of temperature, also in degrees Fahrenheit, and wind speed, in miles per
hour.
Suppose your anemometer says the wind is blowing at 25 miles per hour and your
thermometer shows a reading of −15◦ degrees. However, you know your thermometer
is only accurate to within 2◦ degrees and your anemometer is only accurate to within
3 miles per hour. What is the wind chill based on your measurements? Estimate the
uncertainty in your measurement of the wind chill.

C



10.5. THE CHAIN RULE 75

1 2 3

1

2

3

x

y

y

x

z

Figure 10.19: At left, your position in the plane; at right, the corresponding temperature.

10.5 The Chain Rule

Preview Activity 10.5. Suppose you are driving around in the x-y plane in such a way that your
position at time t is given by the vector-valued function

r(t) = 〈x(t), y(t)〉 = 〈2− t2, t3 + 1〉.
The path taken is shown on the left of Figure 10.19.

Suppose, furthermore, that the temperature at a point in the plane is given by

T (x, y) = 10− 1

2
x2 − 1

5
y2,

and note that the surface generated by T is shown on the right of Figure 10.19. Therefore, as time
passes, your position (x(t), y(t)) changes, and, as your position changes, the temperature T (x, y)
also changes.

(a) The position function r provides a parameterization x = x(t) and y = y(t) of the position
at time t. By substituting x(t) for x and y(t) for y in the formula for T , we can write
T = T (x(t), y(t)) as a function of t. Make these substitutions to write T as a function of
t and then use the Chain Rule from single variable calculus to find dT

dt . (Do not do any
algebra to simplify the derivative, either before taking the derivative, nor after.)

(b) Now we want to understand how the result from part (a) can be obtained from T as a
multivariable function. Recall from the previous section that small changes in x and y
produce a change in T that is approximated by

∆T ≈ Tx∆x+ Ty∆y.

The Chain Rule tells us about the instantaneous rate of change of T , and this can be found
as

lim
∆t→0

∆T

∆t
= lim

∆t→0

Tx∆x+ Ty∆y

∆t
. (10.1)
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Use equation (10.1) to explain why the instantaneous rate of change of T that results from
a change in t is

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
. (10.2)

(c) Using the original formulas for T , x, and y in the problem statement, calculate all of the
derivatives in Equation (10.2) and hence write the right-hand side of Equation (10.2) in
terms of x, y, and t.

(d) Compare the results of parts (a) and (c). Write a couple of sentences that identify specifi-
cally how each term in (c) relates to a corresponding terms in (a). This connection between
parts (a) and (c) provides a multivariable version of the Chain Rule.

./
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Activity 10.14.

In the following questions, we apply the recently-developed Chain Rule in several different
contexts.

(a) Suppose that we have a function z defined by z(x, y) = x2 + xy3. In addition, suppose
that x and y are restricted to points that move around the plane by following a circle of
radius 2 centered at the origin that is parameterized by

x(t) = 2 cos t, and y(t) = 2 sin t.

Use the Chain Rule to find the resulting instantaneous rate of change dz
dt .

(b) Suppose that the temperature on a metal plate is given by the function T with

T (x, y) = 100− (x2 + 4y2),

where the temperature is measured in degrees Fahrenheit and x and y are each mea-
sured in feet.

i. Find Tx and Ty. What are the units on these partial derivatives?
ii. Suppose an ant is walking along the x-axis at the rate of 2 feet per minute toward

the origin. When the ant is at the point (2, 0), what is the instantaneous rate of
change in the temperature dT/dt that the ant experiences. Include units on your
response.

iii. Suppose instead that the ant walks along an ellipse with x = 6 cos(t) and y =
3 sin(t), where t is measured in minutes. Find dT

dt at t = π/6, t = π/4, and t = π/3.
What does this seem to tell you about the path along which the ant is walking?

(c) Suppose that you are walking along a surface whose elevation is given by a function
f . Furthermore, suppose that if you consider how your location corresponds to points
in the x-y plane, you know that when you pass the point (2, 1), your velocity vector
is v = 〈−1, 2〉. If some contours of the function f(x, y) are as shown in Figure 10.20,
estimate the rate of change df/dt when you pass through (2, 1).

./
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Figure 10.20: Some contours of f(x, y).
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Activity 10.15.
(a) Figure 10.21 shows the tree diagram we construct when (a) z depends on w, x, and y,

(b) w, x, and y each depend on u and v, and (c) u and v depend on t.

z

w x y

u v u v u v

t t t t t t

Figure 10.21: Three levels of dependencies

i. Label the edges with the appropriate derivatives.

ii. Use the Chain Rule to write
dz

dt
.

(b) Suppose that z = x2 − 2xy2 and that

x = r cos θ

y = r sin θ.

i. Construct a tree diagram representing the dependencies of z on x and y and x and
y on r and θ.

ii. Use the tree diagram to find ∂z
∂r .

iii. Now suppose that r = 3 and θ = π/6. Find the values of x and y that correspond to
these given values of r and θ, and then use the Chain Rule to find the value of the
partial derivative ∂z

∂θ |(3,π6 ).

./
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10.6 Directional Derivatives and the Gradient

Preview Activity 10.6. Let’s consider the function f defined by

f(x, y) = 30− x2 − 1

2
y2,

and suppose that f measures the temperature, in degrees Celsius, at a given point in the plane,
where x and y are measured in feet. Assume that the positive x-axis points due east, while the
positive y-axis points due north. A contour plot of f is shown in Figure 10.22
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Figure 10.22: A contour plot of f(x, y) = 30− x2 − 1
2y

2.

(a) Suppose that a person is walking due east, and thus parallel to the x-axis. At what instan-
taneous rate is the temperature changing at the moment she passes the point (2, 1)? What
are the units on this rate of change?

(b) Next, determine the instantaneous rate of change of temperature at the point (2, 1) if the
person is instead walking due north. Again, include units on your result.

(c) Now, rather than walking due east or due north, let’s suppose that the person is walking
with velocity given by the vector v = 〈3, 4〉, where time is measured in seconds. Note that
the person’s speed is thus |v| = 5 feet per second.

Find parametric equations for the person’s path; that is, parameterize the line through
(2, 1) using the direction vector v = 〈3, 4〉. Let x(t) denote the x-coordinate of the line, and
y(t) its y-coordinate.

(d) With the parameterization in (c), we can now view the temperature f as not only a function
of x and y, but also of time, t. Hence, use the chain rule to determine the value of df

dt |t=0.
What are the units on your answer? What is the practical meaning of this result?

./
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Activity 10.16.

Let f(x, y) = 3xy − x2y3.

(a) Determine fx(x, y) and fy(x, y).

(b) Use Equation (??) to determineDif(x, y) andDjf(x, y). What familiar function isDif(x, y)?
What familiar function is Djf(x, y)?

(c) Use Equation (??) to find the derivative of f in the direction of the vector v = 〈2, 3〉 at
the point (1,−1). Remember that a unit direction vector is needed.

C
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Activity 10.17.

Let’s consider the function f defined by f(x, y) = x2 − y2. Some contours for this function are
shown in Figure 10.23.
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Figure 10.23: Contour lines of f(x, y) = x2 − y2.

(a) Find the gradient∇f(x, y).

(b) For each of the following points (x0, y0), evaluate the gradient ∇f(x0, y0) and sketch
the gradient vector with its tail at (x0, y0). Some of the vectors are too long to fit onto
the plot, but we’d like to draw them to scale; to do so, scale each vector by a factor of
1/4.

• (x0, y0) = (2, 0)

• (x0, y0) = (0, 2)

• (x0, y0) = (2, 2)

• (x0, y0) = (2, 1)

• (x0, y0) = (−3, 2)

• (x0, y0) = (−2,−4)

• (x0, y0) = (0, 0)

(c) What do you notice about the relationship between the gradient at (x0, y0) and the con-
tour line passing through that point?

(d) Does f increase or decrease in the direction of ∇f(x0, y0)? Provide a justification for
your response.

C
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Activity 10.18.

In this activity we investigate how the gradient is related to the directions of greatest increase
and decrease of a function. Let f be a differentiable function and u a unit vector.

(a) Let θ be the angle between∇f(x0, y0) and u. Explain why

Duf(x0, y0) = |〈fx(x0, y0), fy(x0, y0)〉| cos(θ). (10.3)

(b) At the point (x0, y0), the only quantity in Equation (10.3) that can change is θ (which de-
termines the direction u of travel). Explain why θ = 0 makes the quantity |〈fx(x0, y0), fy(x0, y0)〉| cos(θ)
as large as possible.

(c) When θ = 0, in what direction does the unit vector u point relative to∇f(x0, y0)? Why?
What does this tell us about the direction of greatest increase of f at the point (x0, y0)?

(d) In what direction, relative to ∇f(x0, y0), does f decrease most rapidly at the point
(x0, y0)?

(e) State the unit vectors u and v (in terms of ∇f(x0, y0)) that provide the directions of
greatest increase and decrease for the function f at the point (x0, y0). What important
assumption must we make regarding∇f(x0, y0) in order for these vectors to exist?

C
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Activity 10.19.

Consider the function f defined by f(x, y) = 2x2 − xy + 2y.

(a) Find the gradient∇f(1, 2) and sketch it on Figure 10.24.
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Figure 10.24: A plot for the gradient∇f(1, 2).

(b) Sketch the unit vector z =
〈
− 1√

2
,− 1√

2

〉
on Figure 10.24 with its tail at (1, 2). Now find

the directional derivative Dzf(1, 2).

(c) What is the slope of the graph of f in the direction z? What does the sign of the direc-
tional derivative tell you?

(d) Consider the vector v = 〈2,−1〉 and sketch v on Figure 10.24 with its tail at (1, 2). Find
a unit vector w pointing in the same direction of v. Without computingDwf(1, 2), what
do you know about the sign of this directional derivative? Now verify your observation
by computing Dwf(1, 2).

(e) In which direction (that is, for what unit vector u) is Duf(1, 2) the greatest? What is the
slope of the graph in this direction?

(f) Corresponding, in which direction is Duf(1, 2) least? What is the slope of the graph in
this direction?

(g) Sketch two unit vectors u for which Duf(1, 2) = 0 and then find component represen-
tations of these vectors.

(h) Suppose you are standing at the point (3, 3). In which direction should you move to
cause f to increase as rapidly as possible? At what rate does f increase in this direction?

C
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Figure 10.25: Contours and gradient for T (x, y) and the missile’s path.

Activity 10.20.
(a) The temperature T (x, y) has its maximum value at the fighter jet’s location. State the

fighter jet’s location and explain how Figure 10.25 tells you this.

(b) Determine∇T at the fighter jet’s location and give a justification for your response.

(c) Suppose that a different function f has a local maximum value at (x0, y0). Sketch the
behavior of some possible contours near this point. What is∇f(x0, y0)?

(d) Suppose that a function g has a local minimum value at (x0, y0). Sketch the behavior of
some possible contours near this point. What is∇g(x0, y0)?

(e) If a function g has a local minimum at (x0, y0), what is the direction of greatest increase
of g at (x0, y0)?

C
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10.7 Optimization

Preview Activity 10.7. Let z = f(x, y) be a differentiable function, and suppose that at the point
(x0, y0), f achieves a local maximum. That is, the value of f(x0, y0) is greater than the value
of f(x, y) for all (x, y) nearby (x0, y0). You might find it helpful to sketch a rough picture of a
possible function f that has this property.

(a) If we consider the trace given by holding y = y0 constant, then the single-variable function
f(x, y0) must have a local maximum at x0. What does this say about the value of the partial
derivative fx(x0, y0)?

(b) In the same way, the trace given by holding x = x0 constant has a local maximum at y = y0.
What does this say about the value of the partial derivative fy(x0, y0)?

(c) What may we now conclude about the gradient∇f(x0, y0) at the local maximum? How is
this consistent with the statement “f increases most rapidly in the direction∇f(x0, y0)?”

(d) How will the tangent plane to the surface z = f(x, y) appear at the point (x0, y0, f(x0, y0))?

(e) By first computing the partial derivatives, find any points at which the function f(x, y) =
2x− x2 − (y + 2)2 may have a local maximum.

./
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Activity 10.21.

Find the critical points of each of the following functions. Then, using appropriate technology
(e.g., Wolfram|Alpha or CalcPlot3D1), plot the graphs of the surfaces near each critical value
and compare the graph to your work.

(a) f(x, y) = 2 + x2 + y2

(b) f(x, y) = 2 + x2 − y2

(c) f(x, y) = 2x− x2 − 1
4y

2

(d) f(x, y) = |x|+ |y|
(e) f(x, y) = 2xy − 4x+ 2y − 3.

C

1at http://web.monroecc.edu/manila/webfiles/calcNSF/JavaCode/CalcPlot3D.htm

http://web.monroecc.edu/manila/webfiles/calcNSF/JavaCode/CalcPlot3D.htm
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Activity 10.22.

Find the critical points of the following functions and use the Second Derivative Test to classify
the critical points.

(a) f(x, y) = 3x3 + y2 − 9x+ 4y

(b) f(x, y) = xy + 2
x + 4

y

(c) f(x, y) = x3 + y3 − 3xy.

C
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Activity 10.23.

While the quantity of a product demanded by consumers is often a function of the price of
the product, the demand for a product may also depend on the price of other products. For
instance, the demand for blue jeans at Old Navy may be affected not only by the price of the
jeans themselves, but also by the price of khakis.

Suppose we have two goods whose respective prices are p1 and p2. The demand for these
goods, q1 and q2, depend on the prices as

q1 = 150− 2p1 − p2 (10.6)
q2 = 200− p1 − 3p2. (10.7)

The seller would like to set the prices p1 and p2 in order to maximize revenue. We will assume
that the seller meets the full demand for each product. Thus, if we letR be the revenue obtained
by selling q1 items of the first good at price p1 per item and q2 items of the second good at price
p2 per item, we have

R = p1q1 + p2q2.

We can then write the revenue as a function of just the two variables p1 and p2 by using Equa-
tions (10.6) and (10.7), giving us

R(p1, p2) = p1(150− 2p1 − p2) + p2(200− p1 − 3p2) = 150p1 + 200p2 − 2p1p2 − 2p2
1 − 3p2

2.

A graph of R as a function of p1 and p2 is shown in Figure 10.26.
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Figure 10.26: A revenue function.

(a) Find all critical points of the revenue function, R(p1, p2).

(b) Apply the Second Derivative Test to determine the type of any critical points.

(c) Where should the seller set the prices p1 and p2 to maximize the revenue?

C
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Activity 10.24.

Let f(x, y) = x2 − 3y2 − 4x + 6y with triangular domain R whose vertices are at (0, 0), (4, 0),
and (0, 4). The domain R and a graph of f on the domain appear in Figure 10.27.
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Figure 10.27: The domain of the function f(x, y) = x2 − 3y2 − 4x+ 6y and its graph.

(a) Find all of the critical points of f in R.

(b) Parameterize the horizontal leg of the triangular domain, and find the critical points of
f on that leg.

(c) Parameterize the vertical leg of the triangular domain, and find the critical points of f
on that leg.

(d) Parameterize the hypotenuse of the triangular domain, and find the critical points of f
on the hypotenuse.

(e) Find the absolute maximum and absolute minimum value of f on R.

C
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10.8 Constrained Optimization:Lagrange Multipliers

Preview Activity 10.8. According to U.S. postal regulations, the girth plus the length of a parcel
sent by mail may not exceed 108 inches, where by “girth” we mean the perimeter of the smallest
end. Our goal is to find the largest possible volume of a rectangular parcel with a square end that
can be sent by mail.2 If we let x be the length of the side of one square end of the package and y
the length of the package, then we want to maximize the volume f(x, y) = x2y of the box subject
to the constraint that the girth (4x) plus the length (y) is as large as possible, or 4x+ y = 108. The
equation 4x+ y = 108 is thus an external constraint on the variables.

(a) The constraint equation involves the function g that is given by

g(x, y) = 4x+ y.

Explain why the constraint is a contour of g, and is therefore a two-dimensional curve.
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Figure 10.28: Contours of f and the constraint equation g(x, y) = 108.

(b) Figure 10.28 shows the graph of the constraint equation g(x, y) = 108 along with a few
contours of the volume function f . Since our goal is to find the maximum value of f
subject to the constraint g(x, y) = 108, we want to find the point on our constraint curve
that intersects the contours of f at which f has its largest value.

i. Points A and B in Figure 10.28 lie on a contour of f and on the constraint equation
g(x, y) = 108. Explain why neither A nor B provides a maximum value of f that
satisfies the constraint.

ii. Points C and D in Figure 10.28 lie on a contour of f and on the constraint equation
g(x, y) = 108. Explain why neither C nor D provides a maximum value of f that
satisfies the constraint.

2We solved this applied optimization problem in single variable Active Calculus, so it may look familiar. We take
a different approach in this section, and this approach allows us to view most applied optimization problems from
single variable calculus as constrained optimization problems, as well as provide us tools to solve a greater variety of
optimization problems.
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iii. Based on your responses to parts i. and ii., draw the contour of f on which you believe
f will achieve a maximum value subject to the constraint g(x, y) = 108. Explain why
you drew the contour you did.

(c) Recall that g(x, y) = 108 is a contour of the function g, and that the gradient of a function
is always orthogonal to its contours. With this in mind, how should∇f and∇g be related
at the optimal point? Explain.

./
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Activity 10.25.

A cylindrical soda can holds about 355 cc of liquid. In this activity, we want to find the dimen-
sions of such a can that will minimize the surface area.

(a) What are the variables in this problem? What restriction(s), if any, are there on these
variables?

(b) What quantity do we want to optimize in this problem? What equation describes the
constraint?

(c) Find λ and the values of your variables that satisfy Equation (??) in the context of this
problem.

(d) Determine the dimensions of the pop can that give the desired solution to this con-
strained optimization problem.

C
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Activity 10.26.

Use the method of Lagrange multipliers to find the dimensions of the least expensive packing
crate with a volume of 240 cubic feet when the material for the top costs $2 per square foot, the
bottom is $3 per square foot and the sides are $1.50 per square foot.

C



Chapter 11

Multiple Integrals

11.1 Double Riemann Sums and Double Integrals over Rectangles

Preview Activity 11.1. In this activity we introduce the concept of a double Riemann sum.

(a) Review the concept of the Riemann sum from single-variable calculus. Then, explain how
we define the definite integral

∫ b
a f(x) dx of a continuous function of a single variable x

on an interval [a, b]. Include a sketch of a continuous function on an interval [a, b] with
appropriate labeling in order to illustrate your definition.

(b) In our upcoming study of integral calculus for multivariable functions, we will first extend
the idea of the single-variable definite integral to functions of two variables over rectan-
gular domains. To do so, we will need to understand how to partition a rectangle into
subrectangles. Let R be rectangular domain R = {(x, y) : 0 ≤ x ≤ 6, 2 ≤ y ≤ 4} (we can
also represent this domain with the notation [0, 6]× [2, 4]), as pictured in Figure 11.1.

6

4

0
2

Figure 11.1: Rectangular domain R with subrectangles.

To form a partition of the full rectangular region, R, we will partition both intervals [0, 6]
and [2, 4]; in particular, we choose to partition the interval [0, 6] into three uniformly sized

95
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subintervals and the interval [2, 4] into two evenly sized subintervals as shown in Figure
11.1. In the following questions, we discuss how to identify the endpoints of each subin-
terval and the resulting subrectangles.

i. Let 0 = x0 < x1 < x2 < x3 = 6 be the endpoints of the subintervals of [0, 6] after
partitioning. What is the length ∆x of each subinterval [xi−1, xi] for i from 1 to 3?

ii. Explicitly identify x0, x1, x2, and x3. On Figure 11.1 or your own version of the
diagram, label these endpoints.

iii. Let 2 = y0 < y1 < y2 = 4 be the endpoints of the subintervals of [2, 4] after partition-
ing. What is the length ∆y of each subinterval [yj−1, yj ] for j from 1 to 2? Identify y0,
y1, and y2 and label these endpoints on Figure 11.1.

iv. Let Rij denote the subrectangle [xi−1, xi] × [yj−1, yj ]. Appropriately label each sub-
rectangle in your drawing of Figure 11.1. How does the total number of subrectangles
depend on the partitions of the intervals [0, 6] and [2, 4]?

v. What is area ∆A of each subrectangle?

./
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Activity 11.1.

Let f(x, y) = 100 − x2 − y2 be defined on the rectangular domain R = [a, b] × [c, d]. Partition
the interval [a, b] into four uniformly sized subintervals and the interval [c, d] into three evenly
sized subintervals as shown in Figure 11.2. As we did in Preview Activity 11.1, we will need a
method for identifying the endpoints of each subinterval and the resulting subrectangles.

x

y

a b

c

d

Figure 11.2: Rectangular domain with subrectangles.

(a) Let a = x0 < x1 < x2 < x3 < x4 = b be the endpoints of the subintervals of [a, b] after
partitioning. Label these endpoints in Figure 11.2.

(b) What is the length ∆x of each subinterval [xi−1, xi]? Your answer should be in terms of
a and b.

(c) Let c = y0 < y1 < y2 < y3 = d be the endpoints of the subintervals of [c, d] after
partitioning. Label these endpoints in Figure 11.2.

(d) What is the length ∆y of each subinterval [yj−1, yj ]? Your answer should be in terms of
c and d.

(e) The partitions of the intervals [a, b] and [c, d] partition the rectangleR into subrectangles.
How many subrectangles are there?

(f) Let Rij denote the subrectangle [xi−1, xi]× [yj−1, yj ]. Label each subrectangle in Figure
11.2.

(g) What is area ∆A of each subrectangle?

(h) Now let [a, b] = [0, 8] and [c, d] = [2, 6]. Let (x∗11, y
∗
11) be the point in the upper right

corner of the subrectangle R11. Identify and correctly label this point in Figure 11.2.
Calculate the product

f(x∗11, y
∗
11)∆A.

Explain, geometrically, what this product represents.

(i) For each i and j, choose a point (x∗ij , y
∗
ij) in the subrectangle Ri,j . Identify and correctly

label these points in Figure 11.2. Explain what the product

f(x∗ij , y
∗
ij)∆A
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represents.

(j) If we were to add all the values f(x∗ij , y
∗
ij)∆A for each i and j, what does the resulting

number approximate about the surface defined by f on the domain R? (You don’t
actually need to add these values.)

(k) Write a double sum using summation notation that expresses the arbitrary sum from
part (j).

C
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Activity 11.2.

Let f(x, y) = x+ 2y and let R = [0, 2]× [1, 3].

(a) Draw a picture of R. Partition [0, 2] into 2 subintervals of equal length and the interval
[1, 3] into two subintervals of equal length. Draw these partitions on your picture of R
and label the resulting subrectangles using the labeling scheme we established in the
definition of a double Riemann sum.

(b) For each i and j, let (x∗ij , y
∗
ij) be the midpoint of the rectangle Rij . Identify the coordi-

nates of each (x∗ij , y
∗
ij). Draw these points on your picture of R.

(c) Calculate the Riemann sum
n∑
j=1

m∑
i=1

f(x∗ij , y
∗
ij) ·∆A

using the partitions we have described. If we let (x∗ij , y
∗
ij) be the midpoint of the rectan-

gle Rij for each i and j, then the resulting Riemann sum is called a midpoint sum.

(d) Give two interpretations for the meaning of the sum you just calculated.

C
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Activity 11.3.

Let f(x, y) =
√

4− y2 on the rectangular domain R = [1, 7]× [−2, 2]. Partition [1, 7] into 3 equal
length subintervals and [−2, 2] into 2 equal length subintervals. A table of values of f at some
points in R is given in Table 11.1, and a graph of f with the indicated partitions is shown in
Figure 11.3.

−2 −1 0 1 2

1 0
√

3 2
√

3 0

2 0
√

3 2
√

3 0

3 0
√

3 2
√

3 0

4 0
√

3 2
√

3 0

5 0
√

3 2
√

3 0

6 0
√

3 2
√

3 0

7 0
√

3 2
√

3 0

Table 11.1: Table of values of
f(x, y) =

√
4− y2.
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Figure 11.3: Graph of f(x, y) =√
4− y2 on R.

(a) Outline the partition of R into subrectangles on the table of values in Table 11.1.

(b) Calculate the double Riemann sum using the given partition of R and the values of f in
the upper right corner of each subrectangle.

(c) Use geometry to calculate the exact value of
∫∫
R f(x, y) dA and compare it to your ap-

proximation. How could we obtain a better approximation?

C
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11.2 Iterated Integrals

Preview Activity 11.2. Let f(x, y) = 25− x2 − y2 on the rectangular domain R = [−3, 3]× [−4, 4].

As with partial derivatives, we may treat one of the variables in f as constant and think of
the resulting function as a function of a single variable. Now we investigate what happens if we
integrate instead of differentiate.

(a) Choose a fixed value of x in the interior of [−3, 3]. Let

A(x) =

∫ 4

−4
f(x, y) dy.

What is the geometric meaning of the value of A(x) relative to the surface defined by f .
(Hint: Think about the trace determined by the fixed value of x, and consider how A(x) is
related to Figure 11.4.)
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Figure 11.4: A cross section with fixed
x.
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Figure 11.5: A cross section with fixed
x and ∆x.

(b) For a fixed value of x, say x∗i , what is the geometric meaning of A(x∗i ) ∆x? (Hint: Consider
how A(x∗i )∆x is related to Figure 11.5.)

(c) Since f is continuous on R, we can define the function A = A(x) at every value of x
in [−3, 3]. Now think about subdividing the x-interval [−3, 3] into m subintervals, and
choosing a value x∗i in each of those subintervals. What will be the meaning of the sum
m∑
i=1

A(x∗i ) ∆x?

(d) Explain why
∫ 3
−3A(x) dx will determine the exact value of the volume under the surface

z = f(x, y) over the rectangle R.

./
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Activity 11.4.

Let f(x, y) = 25− x2 − y2 on the rectangular domain R = [−3, 3]× [−4, 4].

(a) Viewing x as a fixed constant, use the Fundamental Theorem of Calculus to evaluate
the integral

A(x) =

∫ 4

−4
f(x, y) dy.

Note that you will be integrating with respect to y, and holding x constant. Your result
should be a function of x only.

(b) Next, use your result from (a) along with the Fundamental Theorem of Calculus to

determine the value of
∫ 3

−3
A(x) dx.

(c) What is the value of
∫∫

R
f(x, y) dA? What are two different ways we may interpret the

meaning of this value?

C
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Activity 11.5.

Let f(x, y) = x+ y2 on the rectangle R = [0, 2]× [0, 3].

(a) Evaluate
∫∫

R
f(x, y) dA using an iterated integral. Choose an order for integration by

deciding whether you want to integrate first with respect to x or y.

(b) Evaluate
∫∫

R
f(x, y) dA using the iterated integral whose order of integration is the

opposite of the order you chose in (a).

C
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11.3 Double Integrals over General Regions

Preview Activity 11.3. A tetrahedron is a three-dimensional figure with four faces, each of which
is a triangle. A picture of the tetrahedron T with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) is
shown in Figure 11.6. If we place one vertex at the origin and let vectors a, b, and c be determined
by the edges of the tetrahedron that have one end at the origin, then a formula that tells us the
volume V of the tetrahedron is

V =
1

6
|a · (b× c)|. (11.1)

x

y

z

a

b

c

Figure 11.6: The tetrahedron T .
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Figure 11.7: Projecting T onto the xy-
plane.

(a) Use the formula (11.1) to find the volume of the tetrahedron T .

(b) Instead of memorizing or looking up the formula for the volume of a tetrahedron, we can
use a double integral to calculate the volume of the tetrahedron T . To see how, notice that
the top face of the tetrahedron T is the plane whose equation is

z = 1− (x+ y).

Provided that we can use an iterated integral on a non-rectangular region, the volume of
the tetrahedron will be given by an iterated integral of the form∫ x=?

x=?

∫ y=?

y=?
1− (x+ y) dy dx.

The issue that is new here is how we find the limits on the integrals; note that the outer
integral’s limits are in x, while the inner ones are in y, since we have chosen dA = dy dx.
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To see the domain over which we need to integrate, think of standing way above the tetra-
hedron looking straight down on it, which means we are projecting the entire tetrahedron
onto the xy-plane. The resulting domain is the triangular region shown in Figure 11.7.

Explain why we can represent the triangular region with the inequalities

0 ≤ y ≤ 1− x and 0 ≤ x ≤ 1.

(Hint: Consider the cross sectional slice shown in Figure 11.7.)

(c) Explain why it makes sense to now write the volume integral in the form∫ x=?

x=?

∫ y=?

y=?
1− (x+ y) dy dx =

∫ x=1

x=0

∫ y=1−x

y=0
1− (x+ y) dy dx.

(d) Use the Fundamental Theorem of Calculus to evaluate the iterated integral∫ x=1

x=0

∫ y=1−x

y=0
1− (x+ y) dy dx

and compare to your result from part (a). (As with iterated integrals over rectangular
regions, start with the inner integral.)

./
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Activity 11.6.

Consider the double integral
∫∫

D
(4−x−2y) dA, whereD is the triangular region with vertices

(0,0), (4,0), and (0,2).

(a) Write the given integral as an iterated integral of the form
∫∫

D
(4− x− 2y) dy dx. Draw

a labeled picture of D with relevant cross sections.

(b) Write the given integral as an iterated integral of the form
∫∫

D
(4− x− 2y) dx dy. Draw

a labeled picture of D with relevant cross sections.

(c) Evaluate the two iterated integrals from (a) and (b), and verify that they produce the
same value. Give at least one interpretation of the meaning of your result.

C



11.3. DOUBLE INTEGRALS OVER GENERAL REGIONS 107

Activity 11.7.

Consider the iterated integral
∫ x=5

x=3

∫ y=x2

y=−x
(4x+ 10y) dy dx.

(a) Sketch the region of integration, D, for which∫∫
D

(4x+ 10y) dA =

∫ x=5

x=3

∫ y=x2

y=−x
(4x+ 10y) dy dx.

(b) Determine the equivalent iterated integral that results from integrating in the opposite
order (dx dy, instead of dy dx). That is, determine the limits of integration for which∫∫

D
(4x+ 10y) dA =

∫ y=?

y=?

∫ x=?

x=?
(4x+ 10y) dx dy.

(c) Evaluate one of the two iterated integrals above. Explain what the value you obtained
tells you.

(d) Set up and evaluate a single definite integral to determine the exact area of D, A(D).

(e) Determine the exact average value of f(x, y) = 4x+ 10y over D.

C
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Activity 11.8.

Consider the iterated integral
∫ x=4

x=0

∫ y=2

y=x/2
ey

2
dy dx.

(a) Explain why we cannot antidifferentiate ey
2

with respect to y, and thus are unable to

evaluate the iterated integral
∫ x=4

x=0

∫ y=x/2

y=0
ey

2
dy dx using the Fundamental Theorem

of Calculus.

(b) Sketch the region of integration, D, so that
∫∫

D
ey

2
dA =

∫ x=4

x=0

∫ y=x/2

y=0
ey

2
dy dx.

(c) Rewrite the given iterated integral in the opposite order, using dA = dx dy.

(d) Use the Fundamental Theorem of Calculus to evaluate the iterated integral you devel-
oped in (d). Write one sentence to explain the meaning of the value you found.

(e) What is the important lesson this activity offers regarding the order in which we set up
an iterated integral?

C
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11.4 Applications of Double Integrals

Preview Activity 11.4. Suppose that we have a flat, thin object (called a lamina) whose density
varies across the object. We can think of the density on a lamina as a measure of mass per unit
area. As an example, consider a circular plate D of radius 1 cm whose density δ varies depending
on the distance from its center so that the density in grams per square centimeter at point (x, y) is

δ(x, y) = 10− 2(x2 + y2).

(a) Suppose that we partition the plate into subrectanglesRij , where 1 ≤ i ≤ m and 1 ≤ j ≤ n,
of equal area ∆A, and select a point (x∗ij , y

∗
ij) in Rij for each i and j.

What is the meaning of the quantity δ(x∗ij , y
∗
ij)∆A?

(b) State a double Riemann sum that provides an approximation of the mass of the plate.

(c) Explain why the double integral ∫∫
D
δ(x, y) dA

tells us the exact mass of the plate.

(d) Determine an iterated integral which, if evaluated, would give the exact mass of the plate.
Do not actually evaluate the integral.1

./

1This integral is considerably easier to evaluate in polar coordinates, which we will learn more about in Section 11.5.
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Activity 11.9.

Let D be a half-disk lamina of radius 3 in quadrants IV and I, centered at the origin as shown
in Figure 11.8. Assume the density at point (x, y) is given by δ(x, y) = x. Find the exact mass
of the lamina.
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Figure 11.8: A half disk lamina.

C
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Activity 11.10.

Suppose we want to find the area of the bounded region D between the curves

y = 1− x2 and y = x− 1.

A picture of this region is shown in Figure 11.9.

(a) We know that the volume of a solid with constant height is given by the area of the base
times the height. Hence, we may interpret the area of the region D as the volume of a
solid with base D and of uniform height 1. Determine a double integral whose value is
the area of D.
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Figure 11.9: The graphs of y = 1− x2 and y = x− 1.

(b) Write an iterated integral whose value equals the double integral you found in (a).

(c) Use the Fundamental Theorem of Calculus to evaluate only the inner integral in the
iterated integral in (b).

(d) After completing part (c), you should see a standard single area integral from calc II.
Evaluate this remaining integral to find the exact area of D.

C
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Activity 11.11.

In this activity we determine integrals that represent the center of mass of a laminaD described
by the triangular region bounded by the x-axis and the lines x = 1 and y = 2x in the first
quadrant if the density at point (x, y) is δ(x, y) = 6x+ 6y + 6. A picture of the lamina is shown
in Figure 11.10.

1

1

2

x

y

Figure 11.10: The lamina bounded by the x-axis and the lines x = 1 and y = 2x in the first
quadrant.

(a) Set up an iterated integral that represents the mass of the lamina.

(b) Assume the mass of the lamina is 14. Set up two iterated integrals that represent the
coordinates of the center of mass of the lamina.

C
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Activity 11.12.

A firm manufactures smoke detectors. Two components for the detectors come from different
suppliers – one in Michigan and one in Ohio. The company studies these components for
their reliability and their data suggests that if x is the life span (in years) of a randomly chosen
component from the Michigan supplier and y the life span (in years) of a randomly chosen
component from the Ohio supplier, then the joint probability density function f might be given
by

f(x, y) = e−xe−y.

(a) Theoretically, the components might last forever, so the domain D of the function f is
the set D of all (x, y) such that x ≥ 0 and y ≥ 0. To show that f is a probability density
function on D we need to demonstrate that∫ ∫

D
f(x, y) dA = 1,

or that ∫ ∞
0

∫ ∞
0

f(x, y) dy dx = 1.

Use your knowledge of improper integrals to verify that f is indeed a probability den-
sity function.

(b) Assume that the smoke detector fails only if both of the supplied components fail. To
determine the probability that a randomly selected detector will fail within one year, we
will need to determine the probability that the life span of each component is between
0 and 1 years. Set up an appropriate iterated integral, and evaluate the integral to
determine the probability.

(c) What is the probability that a randomly chosen smoke detector will fail between years
3 and 7?

(d) Suppose that the manufacturer determines that one of the components is more likely to
fail than the other, and hence conjectures that the probability density function is instead
f(x, y) = Ke−xe−2y. What is the value of K?

C
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11.5 Double Integrals in Polar Coordinates

Preview Activity 11.5. The coordinates of a point determine its location. In particular, the rectan-
gular coordinates of a point P are given by an ordered pair (x, y), where x is the (signed) distance
the point lies from the y-axis to P and y is the (signed) distance the point lies from the x-axis to P .
In polar coordinates, we locate the point by considering the distance the point lies from the origin,
(0, 0), and the angle the line segment from the origin to P forms with the positive x-axis.

(a) Determine the rectangular coordinates of the following points:

i. The point P that lies 1 unit from the origin on the positive x-axis.

ii. The point Q that lies 2 units from the origin and such that OQ makes an angle of π
2

with the positive x-axis, where O is the origin, (0, 0).

iii. The point R that lies 3 units from the origin such that OR makes an angle of 2π
3 with

the positive x-axis.

(b) Part (a) indicates that the two pieces of information completely determine the location
of a point: either the traditional (x, y) coordinates, or alternately, the distance r from the
point to the origin along with the angle θ that the line through the origin and the point
makes with the positive x-axis. We write “(r, θ)” to denote the point’s location in its polar
coordinate representation. Find polar coordinates for the points with the given rectangular
coordinates.

i. (0,−1) ii. (−2, 0) iii. (−1, 1)

(c) For each of the following points whose coordinates are given in polar form, determine the
rectangular coordinates of the point.

i. (5, π4 ) ii. (2, 5π
6 ) iii. (

√
3, 5π

3 )

./
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Activity 11.13.

Most polar graphing devices2 can plot curves in polar coordinates of the form r = f(θ). Use
such a device to complete this activity.

(a) Before plotting the polar curve r = 1, think about what shape it should have, in light of
how r is connected to x and y. Then use appropriate technology to draw the graph and
test your intuition.

(b) The equation θ = 1 does not define r as a function of θ, so we can’t graph this equation
on many polar plotters. What do you think the graph of the polar curve θ = 1 looks
like? Why?

(c) Before plotting the polar curve r = θ, what do you think the graph looks like? Why?
Use technology to plot the curve and compare your intuition.

(d) What about the curve r = sin(θ)? After plotting this curve, experiment with others of
your choosing and think about why the curves look the way they do.

C

2You can use your calculator in POL mode, or a web applet such as http://webspace.ship.edu/msrenault/
ggb/polar_grapher.html

http://webspace.ship.edu/msrenault/ggb/polar_grapher.html
http://webspace.ship.edu/msrenault/ggb/polar_grapher.html
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θj

θj+1

ri

ri+1

Figure 11.11: A polar rectangle.

ri

ri+1

Figure 11.12: An annulus.

Activity 11.14.

Consider a polar rectangle R, with r between ri and ri+1 and θ between θj and θj+1 as shown
in Figure 11.11. Let ∆r = ri+1 − ri and ∆θ = θj+1 − θj . Let ∆A be the area of this region.

(a) Explain why the area ∆A in polar coordinates is not ∆r∆θ.

(b) Now find ∆A by the following steps:

i. Find the area of the annulus (the washer-like region) between ri and ri+1, as shown
at right in Figure 11.12. This area will be in terms of ri and ri+1.

ii. Observe that the region R is only a portion of the annulus, so the area ∆A of R is
only a fraction of the area of the annulus. For instance, if θi+1 − θi were π

4 , then the
resulting wedge would be

π
4

2π
=

1

4

of the entire annulus. In this more general context, using the wedge between the
two noted angles, what fraction of the area of the annulus is the area ∆A?

iii. Write an expression for ∆A in terms of ri, ri+1, θj , and θj+1.
iv. Finally, write the area ∆A in terms of ri, ri+1, ∆r, and ∆θ, where each quantity

appears only once in the expression. (Hint: Think about how to factor a difference
of squares.)

(c) As we take the limit as ∆r and ∆θ go to 0, ∆r becomes dr, ∆θ becomes dθ, and ∆A
becomes dA, the area element. Using your work in (iv), write dA in terms of r, dr, and
dθ.

C
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Activity 11.15.

Let f(x, y) = x+ y and D = {(x, y) : x2 + y2 ≤ 4}.
(a) Write the double integral of f over D as an iterated integral in rectangular coordinates.

(b) Write the double integral of f over D as an iterated integral in polar coordinates.

(c) Evaluate one of the iterated integrals. Why is the final value you found not surprising?

C
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Figure 11.13: The graphs of y = x and x2 + (y − 1)2 = 1, for use in Activity 11.16.

Activity 11.16.

Consider the circle given by x2 + (y − 1)2 = 1 as shown in Figure 11.13.

(a) Determine a polar curve in the form r = f(θ) that traces out the circle x2 + (y− 1)2 = 1.

(b) Find the exact average value of g(x, y) =
√
x2 + y2 over the interior of the circle x2 +

(y − 1)2 = 1.

(c) Find the volume under the surface h(x, y) = x over the region D, where D is the region
bounded above by the line y = x and below by the circle.

(d) Explain why in both (b) and (c) it is advantageous to use polar coordinates.

C
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11.6 Surfaces Defined Parametrically and Surface Area

Preview Activity 11.6. Recall the standard parameterization of the unit circle that is given by

x(t) = cos(t) and y(t) = sin(t),

where 0 ≤ t ≤ 2π.

(a) Determine a parameterization of the circle of radius 1 in R3 that has its center at (0, 0, 1)
and lies in the plane z = 1.

(b) Determine a parameterization of the circle of radius 1 in 3-space that has its center at
(0, 0,−1) and lies in the plane z = −1.

(c) Determine a parameterization of the circle of radius 1 in 3-space that has its center at
(0, 0, 5) and lies in the plane z = 5.

(d) Taking into account your responses in (a), (b), and (c), describe the graph that results from
the set of parametric equations

x(s, t) = cos(t), y(s, t) = sin(t), and z(s, t) = s,

where 0 ≤ t ≤ 2π and −5 ≤ s ≤ 5. Explain your thinking.

(e) Just as a cylinder can be viewed as a “stack” of circles of constant radius, a cone can be
viewed as a stack of circles with varying radius. Modify the parametrizations of the circles
above in order to construct the parameterization of a cone whose vertex lies at the origin,
whose base radius is 4, and whose height is 3, where the base of the cone lies in the plane
z = 3. Use appropriate technology3 to plot the parametric equations you develop. (Hint:
The cross sections parallel to the xz plane are circles, with the radii varying linearly as z
increases.)

./

3e.g., http://www.flashandmath.com/mathlets/multicalc/paramrec/surf_graph_rectan.html

http://www.flashandmath.com/mathlets/multicalc/paramrec/surf_graph_rectan.html
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Activity 11.17.

In this activity, we seek a parametrization of the sphere of radius R centered at the origin,
as shown on the left in Figure 11.14. Notice that this sphere may be obtained by revolving a
half-circle contained in the xz-plane about the z-axis, as shown on the right.

x

y

z

x

z

R

Figure 11.14: A sphere obtained by revolving a half-circle.

(a) Begin by writing a parametrization of this half-circle using the parameter s:

x(s) = . . . , z(s) = . . . .

Be sure to state the domain of the parameter s.

(b) By revolving the points on this half-circle about the z-axis, obtain a parametrization
r(s, t) of the points on the sphere of radius R. Be sure to include the domain of both
parameters s and t. (Hint: What is the radius of the circle obtained when revolving a
point on the half-circle around the z axis?)

(c) Draw the surface defined by your parameterization with appropriate technology4.

C

4e.g., http://web.monroecc.edu/manila/webfiles/calcNSF/JavaCode/CalcPlot3D.htm or http://
www.flashandmath.com/mathlets/multicalc/paramrec/surf_graph_rectan.html

http://web.monroecc.edu/manila/webfiles/calcNSF/JavaCode/CalcPlot3D.htm
http://www.flashandmath.com/mathlets/multicalc/paramrec/surf_graph_rectan.html
http://www.flashandmath.com/mathlets/multicalc/paramrec/surf_graph_rectan.html
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Activity 11.18.

Consider the cylinder with radius a and height h defined parametrically by

r(s, t) = a cos(s)i + a sin(s)j + tk

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ h, as shown in Figure 11.15.
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z
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h

Figure 11.15: A cylinder.

(a) Set up an iterated integral to determine the surface area of this cylinder.

(b) Evaluate the iterated integral.

(c) Recall that one way to think about the surface area of a cylinder is to cut the cylinder
horizontally and find the perimeter of the resulting cross sectional circle, then multi-
ply by the height. Calculate the surface area of the given cylinder using this alternate
approach, and compare your work in (b).

C
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Activity 11.19.

Let z = f(x, y) define a smooth surface, and consider the corresponding parameterization
r(s, t) = 〈s, t, f(s, t)〉.

(a) Let D be a region in the domain of f . Using Equation ??, show that the area, S, of the
surface defined by the graph of f over D is

S =

∫∫
D

√
(fx(x, y))2 + (fy(x, y))2 + 1 dA.

(b) Use the formula developed in (a) to calculate the area of the surface defined by f(x, y) =√
4− x2 over the rectangle D = [−2, 2]× [0, 3].

(c) Observe that the surface of the solid describe in (b) is half of a circular cylinder. Use
the standard formula for the surface area of a cylinder to calculate the surface area in a
different way, and compare your result from (b).

C
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11.7 Triple Integrals

Preview Activity 11.7. Consider a solid piece granite in the shape of a box B = {(x, y, z) : 0 ≤
x ≤ 4, 0 ≤ y ≤ 6, 0 ≤ z ≤ 8}, whose density varies from point to point. Let δ(x, y, z) represent
the mass density of the piece of granite at point (x, y, z) in kilograms per cubic meter (so we are
measuring x, y, and z in meters). Our goal is to find the mass of this solid.

Recall that if the density was constant, we could find the mass by multiplying the density and
volume; since the density varies from point to point, we will use the approach we did with two-
variable lamina problems, and slice the solid into small pieces on which the density is roughly
constant.

(a) Partition the interval [0, 4] into 2 subintervals of equal length, the interval [0, 6] into 3 subin-
tervals of equal length, and the interval [0, 8] into 2 subintervals of equal length. This
partitions the box B into sub-boxes as shown in Figure 11.16.

x

y

z

Figure 11.16: A partitioned three-dimensional domain.

(b) Let 0 = x0 < x1 < x2 = 4 be the endpoints of the subintervals of [0, 4] after partitioning.
Draw a picture of Figure 11.16 and label these endpoints on your drawing. Do likewise
with 0 = y0 < y1 < y2 < y3 = 6 and 0 = z0 < z1 < z2 = 8

What is the length ∆x of each subinterval [xi−1, xi] for i from 1 to 2? the length of ∆y? of
∆z?

(c) The partitions of the intervals [0, 4], [0, 6] and [0, 8] partition the boxB into sub-boxes. How
many sub-boxes are there? What is volume ∆V of each sub-box?

(d) Let Bijk denote the sub-box [xi−1, xi] × [yj−1, yj ] × [zk−1, zk]. Say that we choose a point
(x∗ijk, y

∗
ijk, z

∗
ijk) in the i, j, kth sub-box for each possible combination of i, j, k. What is the

meaning of δ(x∗ijk, y
∗
ijk, z

∗
ijk)? What physical quantity will δ(x∗ijk, y

∗
ijk, z

∗
ijk)∆V approxi-

mate?

(e) What final step(s) would it take to determine the exact mass of the piece of granite?

./
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Activity 11.20.
(a) Set up and evaluate the triple integral of f(x, y, z) = x − y + 2z over the box B =

[−2, 3]× [1, 4]× [0, 2].

(b) Let S be the solid cone bounded by z =
√
x2 + y2 and z = 3. A picture of S is shown

at right in Figure 11.17. Our goal in what follows is to set up an iterated integral of the
form ∫ x=?

x=?

∫ y=?

y=?

∫ z=?

z=?
δ(x, y, z) dz dy dx (11.2)

to represent the mass of S in the setting where δ(x, y, z) tells us the density of S at the
point (x, y, z). Our particular task is to find the limits on each of the three integrals.
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Figure 11.17: At right, the cone; at left, its projection.

i. If we think about slicing up the solid, we can consider slicing the domain of the
solid’s projection onto the xy-plane (just as we would slice a two-dimensional re-
gion in R2), and then slice in the z-direction as well. The projection of the solid
is onto the xy-plane is shown at left in Figure 11.17. If we decide to first slice the
domain of the solid’s projection perpendicular to the x-axis, over what range of
constant x-values would we have to slice?

ii. If we continue with slicing the domain, what are the limits on y on a typical slice?
How do these depend on x? What, therefore, are the limits on the middle integral?

iii. Finally, now that we have thought about slicing up the two-dimensional domain
that is the projection of the cone, what are the limits on z in the innermost integral?
Note that over any point (x, y) in the plane, a vertical slice in the z direction will
involve a range of values from the cone itself to its flat top. In particular, observe
that at least one of these limits is not constant but depends on x and y.

iv. In conclusion, write an iterated integral of the form (11.2) that represents the mass
of the cone S.

C



11.7. TRIPLE INTEGRALS 125

x

y

z

6

3

2

2 4 6

1

2

3

4

5

6

x

y

Figure 11.18: The tetrahedron and its projection.

Activity 11.21.

There are several other ways we could have set up the integral to give the mass of the tetrahe-
dron in Example ??.

(a) How many different iterated integrals could be set up that are equal to the integral in
Equation (??)?

(b) Set up an iterated integral, integrating first with respect to z, then x, then y that is
equivalent to the integral in Equation (??). Before you write down the integral, think
about Figure 11.18, and draw an appropriate two-dimensional image of an important
projection.

(c) Set up an iterated integral, integrating first with respect to y, then z, then x that is
equivalent to the integral in Equation (??). As in (b), think carefully about the geometry
first.

(d) Set up an iterated integral, integrating first with respect to x, then y, then z that is
equivalent to the integral in Equation (??).

C
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Activity 11.22.

A solid S is bounded below by the square z = 0, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 and above by the
surface z = 2− x2 − y2. A picture of the solid is shown in Figure 11.19.
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z

Figure 11.19: The solid bounded by the surface z = 2− x2 − y2.

(a) Set up (but do not evaluate) an iterated integral to find the volume of the solid S.

(b) Set up (but do not evaluate) iterated integral expressions that will tell us the center of
mass of S, if the density at point (x, y, z) is δ(x, y, z) = x2 + 1.

(c) Set up (but do not evaluate) an iterated integral to find the average density on S using
the density function from part (b).

(d) Use technology appropriately to evaluate the iterated integrals you determined in (a),
(b), and (c); does the location you determined for the center of mass make sense?

C
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11.8 Triple Integrals in Cylindrical and Spherical Coordinates

Preview Activity 11.8. In the following questions, we investigate the two new coordinate systems
that are the subject of this section: cylindrical and spherical coordinates. Our goal is to consider
some examples of how to convert from rectangular coordinates to each of these systems, and vice
versa. Triangles and trigonometry prove to be particularly important.
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z

z

θ

(r, θ, z)

r

Figure 11.20: The cylindrical coordi-
nates of a point.
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θ

(ρ, θ, φ)

φ ρ

Figure 11.21: The spherical coordi-
nates of a point.

The cylindrical coordinates of a point in R3 are given by (r, θ, z) where r and θ are the polar
coordinates of the point (x, y) and z is the same z coordinate as in Cartesian coordinates. An
illustration is given in Figure 11.20.

(a) Find cylindrical coordinates for the point whose Cartesian coordinates are (−1,
√

3, 3).
Draw a labeled picture illustrating all of the coordinates.

(b) Find the Cartesian coordinates of the point whose cylindrical coordinates are
(
2, 5π

4 , 1
)
.

Draw a labeled picture illustrating all of the coordinates.

The spherical coordinates of a point in R3 are ρ (rho), θ, and φ (phi), where ρ is the distance from
the point to the origin, θ has the same interpretation it does in polar coordinates, and φ is the angle
between the positive z axis and the vector from the origin to the point, as illustrated in Figure 11.21.

For the following questions, consider the point P whose Cartesian coordinates are (−2, 2,
√

8).

(c) What is the distance from P to the origin? Your result is the value of ρ in the spherical
coordinates of P .

(d) Determine the point that is the projection of P onto the xy-plane. Then, use this projection to
find the value of θ in the polar coordinates of the projection of P that lies in the plane. Your
result is also the value of θ for the spherical coordinates of the point.
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(e) Based on the illustration in Figure 11.21, how is the angle φ determined by ρ and the z co-
ordinate of P ? Use a well-chosen right triangle to find the value of φ, which is the final
component in the spherical coordinates of P . Draw a carefully labeled picture that clearly
illustrates the values of ρ, θ, and φ in this example, along with the original rectangular coor-
dinates of P .

(f) Based on your responses to (c), (d), and (e), if we are given the Cartesian coordinates (x, y, z)
of a point Q, how are the values of ρ, θ, and φ in the spherical coordinates of Q determined
by x, y, and z?

./
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Activity 11.23.

In this activity, we graph some surfaces using cylindrical coordinates. To improve your intu-
ition and test your understanding, you should first think about what each graph should look
like before you plot it using technology.5

(a) Plot the graph of the cylindrical equation r = 2, where we restrict the values of θ and
z to the intervals 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 2. What familiar shape does the resulting
surface take? How does this example suggest that we call these coordinates cylindrical
coordinates?

(b) Plot the graph of the cylindrical equation θ = 2, where we restrict the other variables to
the values 0 ≤ r ≤ 2 and 0 ≤ z ≤ 2. What familiar surface results?

(c) Plot the graph of the cylindrical equation z = 2, using 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2. What
does this surface look like?

(d) Plot the graph of the cylindrical equation z = r, where 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2. What
familiar surface results?

(e) Plot the graph of the cylindrical equation z = θ for 0 ≤ θ ≤ 4π. What does this surface
look like?

C

5e.g., http://www.math.uri.edu/˜bkaskosz/flashmo/cylin/ – to plot r = 2, set r to 2, θ to s, and z to t –
to plot θ = π/3, set θ = π/3, r = s, and z = t, for example. Thanks to Barbara Kaskosz of URI and the Flash and Math
team.

http://www.math.uri.edu/~bkaskosz/flashmo/cylin/


130 11.8. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Activity 11.24.

A picture of a cylindrical box, B = {(r, θ, z) : r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2, z1 ≤ z ≤ z2}, is shown
in Figure 11.22. Let ∆r = r2 − r1, ∆θ = θ2 − θ1, and ∆z = z2 − z1. We want to determine the
volume ∆V of B in terms of ∆r, ∆θ, ∆z, r, θ, and z.

x

y

z

Figure 11.22: A cylindrical box.

(a) Appropriately label ∆r, ∆θ, and ∆z in Figure 11.22.

(b) Let ∆A be the area of the projection of the box, B, onto the xy-plane, which is shaded
blue in Figure 11.22. Recall that we previously determined the area ∆A in polar coordi-
nates in terms of r, ∆r, and ∆θ. In light of the fact that we know ∆A and that z is the
standard z coordinate from Cartesian coordinates, what is the volume ∆V in cylindrical
coordinates?

C
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Activity 11.25.

In each of the following questions, set up, but do not evaluate, the requested integral expres-
sion.

(a) Let S be the solid bounded above by the graph of z = x2 + y2 and below by z = 0 on
the unit circle. Determine an iterated integral expression in cylindrical coordinates that
gives the volume of S.

(b) Suppose the density of the cone defined by r = 1− z, with z ≥ 0, is given by δ(r, θ, z) =
z. A picture of the cone is shown in Figure 11.23, and the projection of the cone onto the
xy-plane in given in Figure 11.24. Set up an iterated integral in cylindrical coordinates
that gives the mass of the cone.
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-1 0 1

1

z

Figure 11.23: The cylindrical cone r =
1− z.
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Figure 11.24: The projection into the
xy-plane.

(c) Determine an iterated integral expression in cylindrical coordinates whose value is the
volume of the solid bounded below by the cone z =

√
x2 + y2 and above by the cone

z = 4−
√
x2 + y2. A picture is shown in Figure 11.25.

C
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Figure 11.25: A solid bounded by the cones z =
√
x2 + y2 and z = 4−

√
x2 + y2.
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Activity 11.26.

In this activity, we graph some surfaces using spherical coordinates. To improve your intuition
and test your understanding, you should first think about what each graph should look like
before you plot it using technology.6

(a) Plot the graph of ρ = 1, where θ and φ are restricted to the intervals 0 ≤ θ ≤ 2π
and 0 ≤ φ ≤ π. What is the resulting surface? How does this particular example
demonstrate the reason for the name of this coordinate system?

(b) Plot the graph of φ = π
3 , where ρ and θ are restricted to the intervals 0 ≤ ρ ≤ 1 and

0 ≤ θ ≤ 2π. What familiar surface results?

(c) Plot the graph of θ = π
6 , for 0 ≤ ρ ≤ 1 and 0 ≤ φ ≤ π. What familiar shape arises?

(d) Plot the graph of ρ = θ, for 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π. How does the resulting surface
appear?

C

6e.g., http://www.flashandmath.com/mathlets/multicalc/paramsphere/surf_graph_sphere.
html – to plot ρ = 2, set ρ to 2, θ to s, and φ to t, for example. Thanks to Barbara Kaskosz of URI and the Flash and
Math team.

http://www.flashandmath.com/mathlets/multicalc/paramsphere/surf_graph_sphere.html
http://www.flashandmath.com/mathlets/multicalc/paramsphere/surf_graph_sphere.html
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Activity 11.27.

To find the volume element dV in spherical coordinates, we need to understand how to deter-
mine the volume of a spherical box of the form ρ1 ≤ ρ ≤ ρ2 (with ∆ρ = ρ2 − ρ1), φ1 ≤ φ ≤ φ2

(with ∆φ = φ2−φ1), and θ1 ≤ θ ≤ θ2 (with ∆θ = θ2− θ1). An illustration of such a box is given
in Figure 11.26. This spherical box is a bit more complicated than the cylindrical box we en-
countered earlier. In this situation, it is easier to approximate the volume ∆V than to compute
it directly. Here we can approximate the volume ∆V of this spherical box with the volume of a
Cartesian box whose sides have the lengths of the sides of this spherical box. In other words,

∆V ≈ |PS| |
_
PR| |

_
PQ|,

where |
_
PR| denotes the length of the circular arc from P to R.

x

y

z

S
P

Q

R

Figure 11.26: A spherical box.
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Q

R

Figure 11.27: A spherical volume ele-
ment.

(a) What is the length |PS| in terms of ρ?

(b) What is the length of the arc
_
PR? (Hint: The arc

_
PR is an arc of a circle of radius ρ2, and

arc length along a circle is the product of the angle measure (in radians) and the circle’s
radius.)

(c) What is the length of the arc
_
PQ? (Hint: The arc

_
PQ lies on a horizontal circle as

illustrated in Figure 11.27. What is the radius of this circle?)

(d) Use your work in (a), (b), and (c) to determine an approximation for ∆V in spherical
coordinates.

C
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Activity 11.28.

We can use spherical coordinates to help us more easily understand some natural geometric
objects.

(a) Recall that the sphere of radius a has spherical equation ρ = a. Set up and evaluate an
iterated integral in spherical coordinates to determine the volume of a sphere of radius
a.

(b) Set up, but do not evaluate, an iterated integral expression in spherical coordinates
whose value is the mass of the solid obtained by removing the cone φ = π

4 from the
sphere ρ = 2 if the density δ at the point (x, y, z) is δ(x, y, z) =

√
x2 + y2 + z2. An

illustration of the solid is shown in Figure 11.28.

x

y

z

Figure 11.28: The solid cut from the sphere ρ = 2 by the cone φ = π
4 .

C
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11.9 Change of Variables

Preview Activity 11.9. Consider the double integral

I =

∫∫
D
x2 + y2 dA, (11.3)

where D is the upper half of the unit disk.

(a) Write the double integral I given in Equation (11.3) as an iterated integral in rectangular
coordinates.

(b) Write the double integral I given in Equation (11.3) as an iterated integral in polar coordi-
nates.

When we write the double integral (11.3) as an iterated integral in polar coordinates we make a
change of variables, namely

x = r cos(θ) and y = r sin(θ). (11.4)

We also then have to change dA to r dr dθ. This process also identifies a “polar rectangle” [r1, r2]×
[θ1, θ2] with the original Cartesian rectangle, under the transformation7 in Equation (11.4). The
vertices of the polar rectangle are transformed into the vertices of a closed and bounded region in
rectangular coordinates.

To work with a numerical example, let’s now consider the polar rectangle P given by [1, 2]× [π6 ,
π
4 ],

so that r1 = 1, r2 = 2, θ1 = π
6 , and θ2 = π

4 .

(c) Use the transformation determined by the equations in (11.4) to find the rectangular vertices
that correspond to the polar vertices in the polar rectangle P . In other words, by substi-
tuting appropriate values of r and θ into the two equations in (11.4), find the values of the
corresponding x and y coordinates for the vertices of the polar rectangle P . Label the point
that corresponds to the polar vertex (r1, θ1) as (x1, y1), the point corresponding to the polar
vertex (r2, θ1) as (x2, y2), the point corresponding to the polar vertex (r1, θ2) as (x3, y3), and
the point corresponding to the polar vertex (r2, θ2) as (x4, y4).

(d) Draw a picture of the figure in rectangular coordinates that has the points (x1, y1), (x2, y2),
(x3, y3), and (x4, y4) as vertices. (Note carefully that because of the trigonometric functions
in the transformation, this region will not look like a Cartesian rectangle.) What is the area
of this region in rectangular coordinates? How does this area compare to the area of the
original polar rectangle?

./
7A transformation is another name for function: here, the equations x = r cos(θ) and y = r sin(θ) define a function

T (r, θ) = (r cos(θ), r sin(θ)) so that T is a function (transformation) from R2 to R2. We view this transformation as
mapping a version of the x-y plane where the axes are viewed as representing r and θ (the r-θ plane) to the familiar x-y
plane.
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Activity 11.29.

Consider the change of variables

x = s+ 2t and y = 2s+
√
t.

Let’s see what happens to the rectangle T = [0, 1] × [1, 4] in the st-plane under this change of
variable.

(a) Draw a labeled picture of T in the st-plane.

(b) Find the image of the st-vertex (0, 1) in the xy-plane. Likewise, find the respective
images of the other three vertices of the rectangle T : (0, 4), (1, 1), and (1, 4).

(c) In the xy-plane, draw a labeled picture of the image, T ′, of the original st-rectangle T .
What appears to be the shape of the image, T ′?

(d) To transform an integral with a change of variable, we need to determine the area el-
ement dA for image of the transformed rectangle. How would find the area of the
xy-figure T ′? (Hint: Remember what the cross product of two vectors tells us.)

C
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Activity 11.30.

Find the Jacobian when changing from rectangular to polar coordinates. That is, for the trans-
formation given by x = r cos(θ), y = r sin(θ), determine a simplified expression for the quantity∣∣∣∣∂x∂r ∂y∂θ − ∂x

∂θ

∂y

∂r

∣∣∣∣ .
What do you observe about your result? How is this connected to our earlier work with double
integrals in polar coordinates?

C
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Activity 11.31.

Consider the problem of finding the area of the region D′ defined by the ellipse x2 + y2

4 = 1.
Here we will make a change of variables so that the pre-image of the domain is a circle.

(a) Let x(s, t) = s and y(s, t) = 2t. Explain why the pre-image of the original ellipse (which
lies in the xy plane) is the circle s2 + t2 = 1 in the st-plane.

(b) Recall that the area of the ellipse D′ is determined by the double integral
∫∫

D′
1 dA.

Explain why ∫∫
D′

1 dA =

∫∫
D

2 ds dt

where D is the disk bounded by the circle s2 + t2 = 1. In particular, explain the source
of the “2” in the st integral.

(c) Without evaluating any of the integrals present, explain why the area of the original
elliptical region D′ is 2π.

C
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Activity 11.32.

Let D′ be the region in the xy-plane bounded by the lines y = 0, x = 0, and x+ y = 1. We will
evaluate the double integral ∫∫

D′

√
x+ y(x− y)2 dA (11.5)

with a change of variables.

(a) Sketch the region D′ in the xy plane.

(b) We would like to make a substitution that makes the integrand easier to antidifferenti-
ate. Let s = x+y and t = x−y. Explain why this should make antidifferentiation easier
by making the corresponding substitutions and writing the new integrand in terms of
s and t.

(c) Solve the equations s = x + y and t = x − y for x and y. (Doing so determines the
standard form of the transformation, since we will have x as a function of s and t, and
y as a function of s and t.)

(d) To actually execute this change of variables, we need to know the st-region D that cor-
responds to the xy-region D′.

i. What st equation corresponds to the xy equation x+ y = 1?
ii. What st equation corresponds to the xy equation x = 0?

iii. What st equation corresponds to the xy equation y = 0?
iv. Sketch the st region D that corresponds to the xy domain D′.

(e) Make the change of variables indicated by s = x+y and t = x−y in the double integral
(11.5) and set up an iterated integral in st variables whose value is the original given
double integral. Finally, evaluate the iterated integral.

C
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