

Dr. Mariana García Criado

ITEX meeting Vancouver, Canada

8 April 2024

@nanitundra

mariana.garcia.criado @ed.ac.uk

Jeff Goldblum in Jurassic Park (1993)

The Arctic is becoming warmer and wetter

Climate impacts on Arctic plants

PLANT COVER

SPECIES RANGES

PHENOLOGY

PLANT TRAITS

Plant species are responding differently, which can impact animals and food security

Research questions

- How has Arctic vascular plant diversity changed over the past four decades of rapid Arctic warming?
- Which are the main geographical, climatic and biotic drivers of diversity change?
- Are Arctic plant communities becoming more homogeneous over time with changes in plant composition?

Methods

INTERNATIONAL TUNDRA EXPERIMENT (ITEX+)

42,234 records

2,174 plots

45 study areas

490 species

1981-2022

CHELSA CLIMATE DATA

Mean Summer Temperature

Mean Annual Precipitation

BIODIVERSITY METRICS

Richness Species gains

Evenness Persisting species

Turnover Species losses

ANALYSES

Bayesian hierarchical models

Principal Coordinate Analyses (PCoA)

(log(species)/year)

Warming was related to compositional change

Change in Warmest Quarter Temperature (°C/year)

Shrubification

Shrubification

GREATER SHRUB COVER

Evenness

INCREASED SHRUB COVER

 Species losses Richness over time Evenness over time

Temporal turnover

No homogenization

Jaccard (presence/absence turnover)

Resistance to change

50
Species Proportion

75

100

GAINS

Resistance to change

Plant communities that are more species-rich and more even are more resistant to change

No consistent trend of richness change over time, reflecting a strong influence of site idiosyncrasy and a variety of processes.

Both warming and shrubification are driving community richness and species trajectories.

Take-away message:

Contrasting richness trends but widespread compositional change in Arctic vascular plants.

