

International Tundra Experiment Sites Open Top Chambers (OTCs)

Background: Past studies

Changes due to OTCs (warming)

- Increased plant height
- Accelerated phenology
- Increased leaf size
- Increased seed weight
- Increased ovule number per flower
- More seed set overall
- Increased photosynthesis
- Increased green leaf biomass
- Decreased leaf nitrogen
 - (Molau 2001, Welker et al. 2003, Hudson and Henry 2011, Baruah et al. 2017)

Traits	Wild	F1	Later F1
Warming origin			
Control origin			

Anne Bjorkman (thesis)

Are these changes passed on to future generations and how?

Definitions

Central dogma

DNA → RNA → Protein → Phenotype

Definitions

Gene expression

DNA → RNA

Epigenetics

DNA methylation

Knowledge gap and hypothesis

Questions

- Are plant responses to warming plastic (no long-term component), epigenetic, or genetic?
- Can warming induced changes be inherited?

Hypothesis

There is a combination of plastic and epigenetic responses to warming

Study species: Dryas octopetala and integrifolia

- Reference genome
- 2x = 460 Mbp
- 2n=18 chromosomes
- Well studied in Arctic

https://www.facebook.com/716228471745058/posts/3199354370099110/

Field sampling *

Leaf and seed collection in and out of warming chambers at 4 sites

Whole Genome Bisulphite Sequencing (WGBS)

Total 102 individuals sequenced at Genome Quebec

ndividuals

Differentially methylated regions (DMRs)

DNA methylation

- q-value=1.54e-25
- q-values are (per default) Bonferroni adjusted based on MWU-test p-values

DNA methylation

What is this specific region?

- Blast matched an amidase protein in *Prunus persica* (At4g34880)

Some amidase enzymes play a role in auxin biosynthesis Auxin:

Controls cell elongation in shoots
Suppresses lateral buds
Delays senescence
Closes stoma for water stress
Initiates flowering

flower development

fruit development

embryo development

https://www.researchgate.net/figure/Various-auxin-responses-in-plants fig1 320956697

Geographic sites differential methylation between warmed and control

ACROSS ALL SITES

385 DMRs N=102 51 control and 51 warming

Differentially methylated defense genes on chromosome 7

- GO:polysaccharide
- GO:defense
- GO:protein
- GO:DNA

Phenology DMRs

- Does differential methylation occur just due to phenology stage of sampling?
- Sampled 10 individuals from Alexandra Fiord at mature flower and senescence (5W and 5C)

Phenology Differentially Methylated Regions

Location of methylation: senescence protein

Open reading frame is conserved between species and is methylated

What about changes in gene expression? RNAseq

- We sequenced RNA to determine how gene expression is affected by the DNA methylation
- Expect methylation to prevent transcription

Sweden RNAseq

- Control plants show higher expression than warming individuals across several genes
- Other sites show varying patterns but clear expression differences

Color Key

and Histogram

0

Low

□ w Z-score

High

Count

Common Garden: Will the differentially methylated regions be inherited?

Site	Parental Warming	Parental Control
Imnavait Creek, Alaska	\tilde{\	
Alexandra Fiord		
Latnjajaure, Sweden		

- Lots of plants died before sampling
- Started with
 2000 seeds in
 each chamber
- Down to 18 sequenced

Seedling growth

Parent plant August 2018

Photos by Huba Arif, Mario Rudner and Johan Martinelli

Inheritance of Warming DMRs (Amidase)

Control

Warming

Overall Results Summary

WARMING METHYLATION

385 differentially methylated regions in response to the warming chambers

Variation in responses with more differential methylation in low Arctic sites

PHENOLOGY

4920 differentially methylated regions between mature flower and senescence

WARMING GENE EXPRESSION

Many genes are expressed differentially between warming and control

https://www.istockphoto.com/vector/dna-rna-mrna-and-protein-synthesis-difference-between-transcription-and-translation-gm1323350905-409029650

INHERITANCE

Changes in DNA methylation and gene expression are inherited

Photo by Huba Arif

Ecological significance

- Many biotic defense genes appear important responses to warming
- Geographic sites have variation in genomic responses to warming chambers
 - Stronger response in Low Arctic sites
- Some environmentally induced changes are seen in the next generation in a new environment
- Thousands of genomic regions involved in phenology changes
- Long list of genes to investigate for specific functions

Acknowledgements

THE W. GARFIELD WESTON

Bourses d'études supérieures du Canada Vanier Canada Graduate Scholarships ArcticNet

PPS%C%DT% DPZ&4%Nicc

Acknowledgements

Thanks to the Rieseberg Lab, field collectors and my supervisory committee! **Supervisory committee:** Loren Rieseberg, Marco Todesco, Greg Henry, Quentin Cronk **Rieseberg lab members who have helped a lot:**

- Marie Sandler
- Marco Todesco
- Huba Arif
- Natalia Bercovich
- Dylan Moxley
- Winnie Cheung

Field collections: Sofie Agger, Petr Macek, Jeremy May, Mats Björkman, Robert Björk, Kari Klanderud

Increased sequencing of non-model species

Photo credit: https://sangerinstitute.blog/2018/11/01/sequencing-all-life-on-earth-facts-and-figures/

Genomics vs genetics

- What is the difference between genetics and genomics?
- Types of studies
 - Barcoding (eDNA, Species identification)
 - Population genetics (biogeography)
 - Gene editing (CRISPR)
 - Gene expression studies (RNA)
 - Epigenetics (DNA methylation)
 - Comparative genomics (comparing species)

Short reads

Long reads

What types of ecological questions can these techniques address?

Barcoding (eDNA, Species identification)

Species diversity changes with experimental manipulations (soil, water)

Population genetics (biogeography)

- Biogeographic history of species
- Barriers to gene flow
- Recombination changes

How do we detect differences between individuals?

Gene expression studies (RNA)

- Phenology
- Winter expression

What about changes in gene expression? RNAseq

- Sequenced long non-coding RNA and mRNA
- Ribosomal RNA depletion protocol

Transcriptome Gene 2 Gene 3 Gene 1

 After sequencing, mapped reads to transcriptome using RSEM

Gene 1	Gene 2	Gene 3
3	0	1
0	2	2
3	1	0
1	2	1
1	1	1

Epigenetics (DNA methylation)

Common gardens

How do we detect differences between individuals?

Coverage (30x) and sequencing many cells

Comparative genomics (comparing species)

High and low latitude species responses

Making a reference genome

Image from:

https://www.phgfoundation.org/briefing/clinical-long-read-sequencing