Key determinants of soil labile nitrogen changes under climate change in the Arctic

A meta-analysis of the responses of soil labile nitrogen pools to experimental warming and snow addition

You Jin Kim (ujin5294@kopri.re.kr) Junge Hyun Anders Michelsen Eilhann E Kwon Ji Young Jung (jyjung@kopri.re.kr)

Contents

- 1. Introduction
- 2. Methods
- 3. Results & discussion
- 4. Conclusions

The Accelerating Warming in the Arctic

- Unprecedented warming: The Arctic has warming four times faster than the global average in recent decades.
 - Noticeable shifts in seasonal patterns: earlier snowmelt and soil thaw & shorter snow-cover duration
 - In some areas, more snow due to increased cloud formation and winter snowfall
- Changes in Arctic terrestrial ecosystems: Warming affects soil conditions, such as temperature, moisture, active-layer depth, and freeze-thaw cycles, leading to changes in the composition and function of Arctic plant and microbial communities.
 - Impacts on soil biogeochemical processes: The biotic and abiotic changes significantly influence essential soil processes, especially carbon (C) and nitrogen (N) dynamics.

Climate Manipulation Experiments Across the Arctic

- Experimental approaches
 - **Open-top chambers (OTCs)**: To elevate soil and air temperatures by reducing wind and trapping solar energy
 - **Snow fences**: To simulate increased or decreased snow cover that affects soil insulation and meltwater availability
- Key findings from experimental warming and snow manipulations
 - Modification of soil temperature, active-layer depth, snow-free periods, and soil moisture conditions
 - Changes in the growth, structure and functions of vegetation and microorganisms
 - Significant shifts in soil C and N dynamics

Meta-analyses of Climate Manipulation Experiments

- Meta-analyses, synthesizing data from climate manipulation experiments, have attempted to generalize the complex responses of Arctic terrestrial ecosystems to rapid climate change, mainly focusing on soil C stocks and dynamics.
- Soil N pools and their changes in Arctic terrestrial ecosystems
 - Although a tight coupling between C and N cycling is generally believed to occur, their dynamics do not always align.
 - Arctic N limitation, caused by slow N transformation processes in cold climates and slow N input from deposition/fixation, is likely to intensify plant-microbe and interplant competition for N uptake, complicating the assessment of soil labile N pools.
 - Climate manipulation experiments (experimental warming and snow manipulation) have attempted to reveal how Arctic climate change affects soil labile N pools, including dissolved-organic N (DON) and inorganic N (NH₄⁺ and NO₃⁻).

Research Gap & Objectives

- Despite these efforts, previous results from climate manipulation experiments were fragmented and controversial.
 - Due to the intensity, frequency, and duration of climate manipulations, influenced by specific local climates, soil conditions, vegetation types, and experimental methodologies
- Future meta-analyses should integrate findings from diverse experiments across broad spatial and temporal scales to better understand soil labile N dynamics within Arctic terrestrial ecosystems under climate change.

E In this study,

- Data compilation: 391 observations from 37 peer-reviewed publications to synthesize the responses of soil labile N pools in various Arctic regions to climate manipulation experiments, with a focus on experimental warming and snow addition
- Decision tree analysis: to explore soil labile N pool responses varied with different settings of climate manipulation experiments, such as climates, soil environments, vegetation types, and experimental methodologies

Objectives of this study,

- 1. To analyze general patterns of how soil labile N pools respond to experimental warming and snow addition
- 2. To identify the key factors driving different responses among each soil labile pools

Data Collection

Literature review process

- Using the Web of Science (apps.webofknowledge.com) for article published within the last 30 years (1995-2023)
- Keywords: "Arctic" AND "Tundra" AND "Soil" AND ("Warming" OR "Snow") AND ("Nitrogen" OR "Ammonium" OR "Nitrate")

Selection criteria

- 1) Climate manipulation experiments conducted within the Arctic Circle (above 66.5°N latitude)
- 2) Field experiments, excluding laboratory-based studies
- 3) Experimental designs with warming and/or snow-added plots compared to controls under similar climate and soil conditions
- 4) Studies examining the independent effects of experimental warming or snow addition, excluding the multifactorial effects
- 5) Studies reporting data on the content of DON, NH_4^+ , and NO_3^- in soil

Data Collection

• Data collection: All data were extracted from figures, tables, or the main text of the selected articles.

	Variables	Unit or Category		
Soil labile N pools	Dissolved-organic nitrogen (DON)	mg/g soil		
	Ammonium (NH ₄ ⁺)			
	Nitrate (NO ₃)			
Climate	Mean annual summer temperature (MAT _{summer})	•۲		
	Mean annual winter temperature (MAT _{winter})	U		
	Mean annual precipitation (MAP)	mm		
Soil	Soil moisture	Wet for >100%, moist for 50-100%, mesic for 25-50%, and dry for <25%		
	рН	Acidic for <6.5 and non-acidic for >6.5		
	Soil layer	O for organic, M for mineral, and O+M for both layers		
Vegetation	Vegetation type	Tussock tundra (TT), heath-dominated tundra (HE), and non-tussock without heath dominance (NT)		
Experimental methodologies	Experimental duration	Years of experiment		
	Climate manipulation techniques	Experimental warming: OTCs or greenhouses Snow addition: Snow fences or natural trees/shrubs		
	Sampling timing	Early summer (late Jun to early Jul), peak summer (mid-Jul to mid-Aug), late summer (mid-Aug to mid-Sep), and freezing period (for all other times)		
	Warming treatment periods (only for warming simulations)	Growing, year-around, and winter seasons		

Data Analyses: Standard Mean Difference (SMD)

- Meta-analysis methodologies
 - Utilized Review Manager-5 software (RevMan-5; Cochrane Community) with a random-effects model
 - To identify the general patterns in how soil labile N pools respond to experimental climate manipulation
- Standard mean difference (SMD)
 - Measures the effects size of climate manipulations on soil N pools, indicating the difference between experimental and control groups relative to the pooled standard deviation in both groups
 - **The overall SMD**: weighted SMDs calculated from the means, standard deviations, and sample sizes from individual observations
- Statistical validation: p-value for significance, funnel plot analysis for literature bias, and I² statistics for heterogeneity

		<<< Analysis results from	RevMan-5 >>>			<<< Funnel plot >>>
Study or Subgroup	Warming Moan SD Total	Control Moan SD Total Weigh	Std. Mean Difference	Std. Mean Difference	OT SE(SMD)	
DON01 DON02 DON03	4.883 2.94449 3 28.6 8.49706 5 29.8 10.5095 5	2.026 0.45033 3 0.99 36.9 35.1063 5 2.19 44.7 41.1437 5 2.09	6 1.09 [-0.83, 3.00] 6 -0.29 [-1.54, 0.96] 6 -0.45 [-1.71, 0.82]		0.5-	
DON04 DON05 	29.2 13.4164 5 8.3 4.24853 5	76.9 77.1443 5 1.99 41.8 30.4105 5 1.59	6 -0.78 [-2.09, 0.54] 6 -1.39 [-2.86, 0.07]	 	1-	
DON56 DON57 DON58 DON59	0.26 0.0866 3 0.29 0.22517 3 0.74 0.72746 3 0.39 0.6755 3	0.34 0.06928 3 1.09 0.26 0.20785 3 1.39 0.67 0.12124 3 1.39 0.2 0.19053 3 1.29	6 -0.82 [-2.60, 0.97] 6 0.11 [-1.49, 1.71] 6 0.11 [-1.50, 1.71] 6 0.31 [-1.32, 1.93]		1.5-	
Total (95% CI) Heterogeneity: Chi ^z = 64. Test for overall effect: Z =	266 .89, df= 56 (P = 0.19); I ^z = 14 : 0.23 (P = 0.82)	265 100.0% %	6 0.02 [-0.16, 0.20] -10	-5 0 5 10 Warmign Controls	2	-5 0 5 10

Data Analyses: Decision Tree Analysis

- Decision tree analysis = Classification & regression trees
 - Non-parametric statistical approach that segments the dataset along the predictor variables into smaller or more homogeneous subgroups through recursive partitioning
 - To uncover factors driving the differential responses of soil labile N pools to experimental warming and snow addition, allowing the identification of meaningful subgroups
 - Methodology
 - 1 The rpart package in R (version 4.2.1) for recursive partitioning and regression tree algorithm
 - \Rightarrow "Predictor variables = data on climates, soil conditions, vegetation types, and experimental methodologies"
 - ② A random effects model in RevMan-5 for calculating SMD subtotals and 95% Cls for identified subgroups

3. Results & discussion

Responses of Soil Labile N to Experimental Warming

- No significance in the overall responses of soil labile N pools to experimental warming ≠ no impact from warming
- Note the diversity of the data sources: 30 sites across seven Arctic regions, including Alaska, Canada, Finland, Greenland, Russia, Svalbard, and Sweden, leading to the variability in soil labile N pools and their responses

Responses of Soil DON to Experimental Warming

Standard mean difference (SMD)

Responses of Soil DON to Experimental Warming

Responses of Soil DON to Experimental Warming

 COPRI
 극지연구소

 Korea Polar Research Institute

- Year-round > Summer warming: probably due to winter warming effect
- But, careful discussion on the limited data and broad confidence intervals

Responses of Soil NO₃⁻ to Experimental Warming

Responses of Soil NO₃⁻ to Experimental Warming

- \checkmark Soil M layer: decrease soil NO₃⁻ pool
 - Plant uptake by deepening roots with warming
 - Microbial immobilization
 - Anaerobic spots capable of denitrification

Responses of Soil Labile N to Snow Addition

- Significance in the overall responses of soil labile N pools to snow addition
- Should not overlook their responses to snow addition, as it can vary depending on the experimental and environmental conditions

KOPRN 극지연구소 Korea Polar Research Institute

Responses of Soil DON to Snow Addition

Responses of Soil DON to Snow Addition

Responses of Soil DON to Snow Addition

Responses of Soil NH_4^+ to Snow Addition

Responses of Soil NH_4^+ to Snow Addition

Responses of Soil NH_4^+ to Snow Addition

Responses of Soil NO_3^- to Snow Addition

Responses of Soil NO_3^- to Snow Addition

4. Conclusions

Implications and recommendations for future research

- Emphasizing that soil labile N responses to climate change are contingent on the inherent complexity of Arctic tundra ecosystems
 - Climatic (MAT_{summer} and MAP) and soil (moisture, pH, and layer) conditions are key factors that determine the overall/specific processes related to soil labile N dynamics, providing environments sensitive to climate manipulations.
 - **Vegetation types** may lead to different N-use strategies, resulting in diverse responses of soil labile N to climate manipulation.
- The settings of experimental methodologies drive significant changes in soil labile N pools.
 - Experimental duration: initial vs prolonged response of soil DON and NH₄⁺ pools to experimental warming and snow addition
 ⇒ Despite its importance, there is a scarcity of empirical observations extending beyond 10 years
 - Warming treatment period: year-round vs summer warming to soil NH_4^+ pool \Rightarrow The need for additional warming experiments that encompass both growing and non-growing seasons
 - Sampling timing: seasonal fluctuations in soil labile N pools in Arctic tundra ecosystems
 ⇒ Essential for periodic and dense high-frequency sampling
- Finally, while our results focused on the net changes in labile N forms remaining in the soil, their fluxes should be investigated to reveal how N pools are influenced by climate change.

