

Intraspecific trait variation

DOI: 10.1111/1365-2745.13848

RESEARCH ARTICLE

Intraspecific trait variation in alpine plants relates to their elevational distribution

```
Christian Rixen<sup>1,2,3</sup> | Sonja Wipf<sup>1,2,3,4</sup> | Sabine B. Rumpf<sup>5,6</sup> | Justyna Giejsztowt<sup>7,8</sup> | Jules Millen<sup>7</sup> | John W. Morgan<sup>3</sup> | Adrienne B. Nicotra<sup>9</sup> | Susanna Venn<sup>10</sup> | Shengwei Zong<sup>1,11</sup> | Katharine J. M. Dickinson<sup>5</sup> | Grégoire T. Freschet<sup>12</sup> | Claudia Kurzböck<sup>1</sup> | Jin Li<sup>13</sup> | Hongli Pan<sup>14</sup> | Beat Pfund<sup>1,2,3</sup> | Elena Quaglia<sup>3,15</sup> | Xu Su<sup>16</sup> | Wei Wang<sup>17</sup> | Xiangtao Wang<sup>18</sup> | Hang Yin<sup>19</sup> | Julie R. Deslippe<sup>7</sup>
```

Intraspecific trait variation in alpine plants relates to their elevational distribution

Climate Warming Accelerates Increase in Plant Species Richness on Arctic and Alpine Summits

→ Change in cover in response to warming

(Elmendorf et al. 2012)

TTT Tundra community & trait composition over space and time

ITEX, Tundra Trait Team and TRY data

Bjorkman et al. 2018, Nature

Trait change: Variation over time

Change in tundra vegetation height over time attributed to turnover and intraspecific variation

Intraspecific traits: Variation over space

Intraspecific temperature-trait relationships only for size-related traits

Intraspecific trait distribution along environmental gradients

Environmental gradient e.g. elevation

Vegetative height of all species

Carex breviculmis, OZ

Plant traits by elevational preference

Plant traits by species range

Weak relationship between elevational preference and species range

Ratio of target and neighbour vegetative height

Conclusions

- Plant species that prefer to grow at lower elevations display great trait variation.
- Plant species found at all elevations also exhibit great trait variation.
- Species that favour very high elevations show little trait variation.

So, if variation is indeed a key factor for rapid and successful adaptation to climate change, then alpine specialists run the risk of falling behind and being squeezed out by more ubiquitous species and generalists.

Next questions:

- Plasticity or genetic variation?
- Is being conservative a disadvantage, being variable an advantage in climate change?

TITEX Change Group Findings So far (Wed AM) Thank you! O Chape in Top 10 Cosmo. Spp. in Gl plots. 3 Climate Amouris.

(2) Change in Stricture

- Tundra Height is increasing
- Forbs, Rushes, Grasses, Evergreen Shrubs

. - Top 10 Cosmopal Spp. make up almost 20% of CH data.

- Top 10 spp one dinging - anal includes Spectral Arbocarrelation

- Top 12 sp not changing in some way below sites => not some whay.

Not since about linearity of chart.

* Need to speed maly in by Anging stope of day at indiv. Stes.

* Need to compare for cly with adult dy to isolate affect of chy in other 49.

- Seolges, Decid Shows, Lichens, Mosses = No change
 - Still looking at specific taxa
- Higer Elevation/Little = greater change
- Cha is first at colder sites.

4 Diversity Richness

- Richaels (chylatthemp. peval) => some of tome visione and of gent highest this in - Gainst 105885 Archie (Hight low) to metylhoist sites of low at.

- New spp. - > Orgons and

- liverity of dy -> araping and.

- Resp. as first Biolim tous > sinchded in all analysis

+ godets

- Diversity (diff last + letys) => mixed response, to in Andard + Law Arc, thin High Arc,

How has actual they in about of top 10 spp. chapter of any in spp. white to the state of at sites.

- Is chape a function of cover where he cover plats should chap + 4 cover of day

- Do mardain dage and on pt how data.

- Reject Richaess + Drivisity and with some dahaset . + add more bodices

- Do the trajectory and with braindisis. - Is the in Ht. nonlinear?

- How does Ht any whate to whiss,

- Can we make id as veg cha - Con me number when dies day

- Is flere a change in the diversity of top hits coulding a

- Cun non-threatly of clay be detected by temping, It's cener =) med to ext. for sop capac. to dig in At, cover etc

Miscellanear. Notes.

- Check SAP Syranyms (Sorja) Head half how 19th Am sites.

- Conect may values in pt. from

Pts for OTC Gop. - Am 10 cosmo. spp. dry some in CTL+

