Research example for first year STEM course

Course: CMB156: Discoveries in Cell & Molecular Biology: A Research Based Laboratory Course

1. Course Overview: Includes key information from syllabus to guide taxonomy evaluation.

Specific objectives – Students will be part of a team of researchers with a common goal of identifying genes involved in regeneration of the brain. Each student will generate dsRNA for their gene of interest, use RNAi to knockdown expression in the planarian flatworm, image and analyze phenotypes related to regeneration, and statistically analyze their results for a final presentation. Students will keep *meticulous* lab records of their semester long project and collaborate with scientists at GVSU and the University of Georgia.

Student learning objectives –After successful completion of the course the students will be able to 1) Interpret experimental data and communicate results through written and oral presentation. 2) Maintain a scientific laboratory notebook and understand the ethics of research record keeping. 3) Explain the basic biological concepts behind methods used in course experiments. 4) Develop professional skills in experimental design, critical thinking and laboratory techniques.

Course Information Video: https://youtu.be/sMNXGZCsQ80

Video includes interviews with our collaborator and student perspectives.

Week	General Topics	Specific Procedures	Deadlines
1	Overview/expectat	Imaging planarian with dissecting microscope;	Pre-lab references
	ions	amputation and formulating a hypothesis	
2	DNA replication,	Phenotypic analysis and imaging of amputations;	Pre-lab references
	Biotechnology	pipetting; calculations	-BB quiz 1 (Week 2)
	tools		
3	Generate dsDNA	PCR; Phenotypic analysis and imaging of	Pre-lab references
	template	amputations	-BB quiz 2 (Week 3)
4	Gel	Agarose gel analysis for PCR product;	-Master Mix
	electrophoresis,	bioinformatics exercise for gene function	Calculations
	bioinformatics		-BB quiz 3 (Week 4)
5	DNA purification	PCR clean up; quantify DNA by spectroscopy	Pre-lab references
	and spectroscopy		-BB quiz 4 (Week 5)
6	Transcription,	Transcription reaction (generate ssRNA);	Pre-lab references
	RNAi method	calculations; DNAse treatment; feeding and	-BB quiz 5 (Week 6)
		maintenance of planarian	-Lab notebooks
			grading I
7	RNA purification,	ssRNA clean up; annealing step; quantify RNA by	Pre-lab references
	annealing nucleic	spectroscopy; formulating hypothesis for RNAi	-Bioinformatics
	acids	experiment	Exercise -BB quiz 6
			(Week 7)

<u>Tentative</u> Schedule for Semester with Major Assessments

8	Experimental	Discuss RNA gel results; First RNAi feeding;	Pre-lab references
	setup for RNAi, 1 st	visualize and image planarian	-BB quiz 7 (Week 8)
	feeding		
9	RNAi 2 nd feeding,	Second RNAi feeding; visualize and image	Pre-lab references
	image analysis	planarian; final presentation discussion	-BB quiz 8 (Week 9)
10	Amputation	Amputation of planarian	-Poster: Background,
			Hypothesis and
			Experimental
			Approach
			-Lab notebook
			grading II
11	Regeneration	Acquire images from amputation; continue Image	-Poster Meetings
	analysis	J and statistics discussion	-Image J practice
			exercise
12	-	Compile results; Results and Conclusion	-Area Measurements
		discussion for final presentations	-Poster: Final
		-Statistics and Graphs due by the end of class	Background,
		period.	Hypothesis and
			Expt Approach
13	Thanksgiving	No class	
14	-	Scientific Abstracts	-Scientific Abstract
15	-	Presentation preparation & practice, finalize	-Lab Notebook:
		posters	Overall Objective
			and Conclusion
	Finals week	Final presentation mini-conference	-Final poster (All
		Time/Date TBD: Will combine with other	sections)
		sections.	-Final presentations

2. Evaluation of taxonomy for 8 quality elements

CMB 156: Existing	CMB 156- Discoveries in Cell & Molecular Biology: A Research- Based
Course since Fall	Laboratory Course
2018	
Characteristic	Examples where your course aligns with this characteristic as a high-impact
	practice (e.g. column 2 or beyond)?
Appropriately high	Expectations throughout the course are communicated in several ways and
performance	students are mentored to reach the expectations:
expectations	 Pre-semester email explains the commitment to a semester long project.
	 Syllabus contains an additional section detailing the expectations (workload and attendance) for success in this course and expectations on how to prepare for each class meeting.

	 Rubrics and examples are provided for major products produced throughout the project (bioinformatics analysis, lab notebook, scientific poster and final presentation) and the details reviewed during class. Students in the course have a graduate student and upper level undergraduate student modeling best practices and routinely providing feedback (both verbally in the lab and written for poster drafts). Mentoring and modeling helps students realize expectations regardless of prior experience. Although students work collaboratively in the lab, each student is held accountable for all aspects of the work and individually present posters.
Significant	The course is a semester long project that culminates in a professional scientific
investment of	presentation.
time/effort by	 Structure: Concepts, methods and results from each week build for the next weak week.
students over	next week's work.
extended time	 Sustained inquiry: First two weeks are introductory to the project with some basic training in techniques related to the research project. Remaining weeks are all dedicated to various aspects of the project (13 weeks of the semester). Outside of class work guides students to make connections between their work and published literature. It also provides a weekly structure on preparing for the class meeting so that we can spend the full class time engaged in project work. Poster preparation is an iterative process that extends over 5 weeks, not a final exam week assignment. More below with constructive feedback.
Faculty/peer	Class size is capped at 20. Students interact with peers, faculty, a graduate
regarding	a semester, we meet virtually with our collaborators at the University of
substantive matters	Georgia.
	 Students are part of a "Gene Team." Four students are studying the same gene and share information/results with the team. Two students are a group to perform experiments collaboratively. Project is a collaboration with researchers at UGA. Two zoom meetings are scheduled in the semester to 1) share hypothesis and receive feedback from an expert in the field and 2) share results and receive feedback on their interpretation of the results. A graduate student and an upper level UG (typically senior) are in the classroom at each meeting to mentor and work one on one with students. See below on how the instructor, GA and UG students also work with students on feedback and reflection.

	Course instructor engages with students at every class meeting
	providing immediate one-on-one feedback on technique and course
	content.
Experiences with	Students share ideas with their Gene Team and determine a strategy to work as
diversity	a team.
Definition: engage	• A reflective exercise on teamwork is used for students to identify
in activities and	where they feel their strengths will most benefit the team.
inquiry regarding	 Students share their interpretation of published results and ideas for
diverse	hypothesis with the team. Students collaborate with peers to problem
communities,	solve results that are unexpected.
cultures, and/or	 Community Building: On campus events and clubs are shared (faculty.
ideas	grad student and undergrad contribute) to encourage students to
	engage in the campus community. Includes information from OURS.
	Pizza Tuesday hosted by CMB, CMB Club, Student Scholar Day, Senior
	Symposium, Undergraduate Research Fair, CMB Celebration, OURS
	Ambassador visits the class, etc.
Frequent, timely,	The course builds throughout the semester and students receive feedback at
and constructive	every step to improve their laboratory technique, write a scientific abstract and
feedback	develop final presentations.
All milestones	 Introductory exercises in the first two weeks allow the students to
assume	practice methods until the student is comfortable fully understands
that feedback is	the nurnose and instructors feel they are appropriately prepared to
frequent	start the experiment. Students first work with an instructor (can be GA
timely and	or upper level undergrad) who models the technique to a small group
constructive.	(2-4 students) Students practice with the instructor and on their own
	Students show the instructor to move forward.
	 Throughout the experiment, students repeat methods/protocols
	multiple times. Instructors continue to give feedback to improve their
	technical skills at every class meeting.
	 Lab notebooks are used to keep a record of all activities, including
	interpretation of results and troubleshooting results. Instructor
	provides detailed feedback on lab notebooks informally each week and
	formally three times throughout the semester.
	 Poster development is an iterative process that follows the same
	expectations for when we prenare posters for an external research
	conference. 1 st draft includes the first three sections (background.
	hypothesis and experimental approach). Students submit for credit
	based on effort to use the guidelines and complete all sections.
	Students receive detailed feedback from two instructors and a one-on-
	one meeting with an instructor. Revisions are submitted and additional
	feedback is provided. Importantly, effort to improve based on the first
	set of comments is part of the assessment. Final sections are added
	and students are given an opportunity to complete a final round of
	revisions.

	• Students use a six sentence process to write a 1 st draft for their	
	scientific abstract. Peer evaluation during class helps students identify	
	ways to improve their own writing and connect how their project is	
	part of the bigger question we are addressing as a group. Instructors	
	provide written feedback on all abstracts. Students are provided with	
	several self-editing tools. Students use comments from four evaluations	
	and self-editing strategies to write a final draft.	
Periodic &	Many forms of reflection are built into the course that require the student to	
structured	make connections and consider the material deeper. In addition, students	
opportunities to	experience authentic scientific research early in their "Voyage," which has the	
reflect & integrate	potential to change the trajectory of their academic career. The E-portfolio will	
learning	also be used to enhance reflective exercises.	
	 Lab notebook- goals and interpretation of their own learning recorded weekly 	
	 Overall objective- connects their work to the larger community; specifically picked tissue regeneration in the brain as our focus for students to according to a superconduction. 	
	students to see relevance beyond the classroom.	
	Final conclusion and discussion- connects their work to published	
	literature	
	Scientific Abstract- reflects on the entire semesters work to pull out the	
	most relevant information and communicate this in a concise	
	paragraph	
	Peer-evaluation- posters and abstracts	
	Self-evaluation- reflect on their contribution to team and how the	
	work fits in with their career goals; next steps at GVSU.	
Opportunities to	The project is authentic research aimed at answering a question that is	
discover relevance	important to the scientific and medical community. Current methods and data	
of learning through	n analysis used by leading researchers are applied to understand tissue	
real-world	regeneration in the brain.	
applications	A big question in biology is understanding how stem cells differentiate	
	and how tissue is regenerated following injury. This is particularly	
	challenging to understand in the human brain. Students use a model	
	organism (planarians) that can regenerate their entire Central Nervous	
	System. This course screens genes that we hypothesize play a role in	
	the process of brain regeneration. The instructor does not know the	
	results of the research.	
	 Students collaborate with an external research group at the University 	
	of Georgia. This research group has expertise in stem cell biology and regeneration.	
	• Students generate a hypothesis based on published literature.	
	• Students use identical methods and technology to those with expertise	
	in the field.	

	Students write a scientific abstract, produce a poster and present novel	
	results.	
	 Results have the potential for publication. 	
Public	Students present their posters in a symposium with peers from the other	
demonstration of	sections. Opportunity to present externally in later semesters.	
competence	 Outside faculty and students are invited (Associate Dean McBane has attended). 	
	• Students from all sections come together for a poster symposium.	
	Assigned and structured peer evaluations to ensure interactions across the sections.	
	• Students are given the opportunity to present at a Student Scholar Day	
	(April annually) or the West Michigan Regional Undergraduate Science	
	Research Conference @ Van Andel Institute (November annually). This	
	is optional and requires additional practice with the instructor and	
	potentially revisions to abstract and poster.	