

#### **Problem Statement**

The MAT Table Excellence in Rehabilitation Company has requested our help to design and prototype a safe and reliable lift/tilt mechanism and sliding brake mechanism that will be integrated with the current table design for increased reliability and stability.

#### Background

The MAT Table is a versatile rehabilitation treatment aimed towards physical/occupational therapists working in outpatient and inpatient clinical settings. The device combines 5 different types of rehabilitative and exercise techniques into a single device, enabling clinicians to provide a comprehensive and personalized treatment approach while optimizing the total recovery time. The device also lowers the risk of injury to the to the clinician and the patient by reducing the number transfers required to and from the device.





#### **Critical Functions**

The critical functions of the MAT Table our design focused were defined as the following:

- 1. Generate motion
- 2. Lift mechanism
- 3. Table mobility
- 4. Control
- 5. Tabletop brake

#### **Key Specifications**

| Specification               | Value | Units  |
|-----------------------------|-------|--------|
| Table Strength              | 1100  | Pounds |
| Lift Strength               | 500   | Pounds |
| Maximum Vertical Height     | 33    | Inches |
| Minimum Vertical Height     | 19    | Inches |
| Maximum Horizontal Rotation | 38    | Degree |
| Minimum Horizontal Rotation | -8    | Degree |
| Maximum Deflection          | 2     | Inches |

#### **Function Structure Diagram**



# **Team 23: Adjustable Physical Therapy Table**

# Team Members: Stephanie Bixby, Kevin Figurski, Evan Ruiter, Caleb Walters, Tyler Williams Sponsor: Brian Scherff Advisor: Dr. Reffeor

#### **Mechanical Design**



### LIFT/TILT MECHANISM



#### **BRAKE MECHANISM**





#### **Next Recommended Steps**

- Linear actuators with position feedback and self-locking capability to enhance control and simplify machine design
- Implement secondary braking mechanism on linear slides to improve stability
- Design for manufacturing

Patient

Noise

• Tolerance stack up analysis

### **Engineering Analysis**

- FEA Analysis
- Fatigue Analysis
- Kinematic Analysis
- Power Calculations
- Buckling Analysis

## **Simulation Results**



Deflection (inche Actuator Forces Shear on Fastene Bearings

Brake Pin Load Power (watts)

# **Final Prototype**





### Acknowledgements

A special thank you to the following people for your impactful contribution in the success of our project:

- Sponsor Mr. Brian Scherff

- Lab Supervisor Roy Visser









| arameter     | Maximum<br>Allowable Value | Actual Value |
|--------------|----------------------------|--------------|
| es)          | 2.00                       | 1.80         |
| (pounds)     | 1348                       | 1228         |
| ers (pounds) | 6283                       | < 2000       |
|              | 740 pounds                 | 9700 hours   |
| (pounds)     | 1038.60/pin                | < 500        |
|              | 1800                       | 216          |
|              |                            |              |

• Faculty Advisor Dr. Wendy Reffeor • Secondary Faculty Advisors Dr. John Farris and Dr. Christopher Pung