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1 Introduction

The new human coronavirus SARS-CoV-2 first reported in Wuhan Province, China
in December 2019 [1, 2], reached 10,000 confirmed cases and 200 deaths due to the
disease (known as COVID-19) by the end of January 2020. Although travel from
China was halted by late-January, dozens of known introductions of the virus to
North America occurred prior to that [3, 4], and dozens more known cases were
imported to the US and Canada during February from Europe, the Middle East,
and elsewhere. Community transmission of unknown origin was first detected in
California on February 26, followed quickly by Washington State [5], Illinois and
Florida, but only on March 7 in New York City. Retrospective genomic analyses
have demonstrated that case-tracing and self-quarantine efforts were effective in
preventing most known imported cases from propagating [6–8], but that the eventual
outbreaks on the West Coast [5, 8, 9] and New York [7] were likely seeded by
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unknown imports in mid-February. By early March, cross-country spread was
primarily due to interstate travel rather than international imports [10].

In mid-March 2020, nearly every region of the United States of America saw a
period of uniform exponential growth in daily confirmed cases—signifying robust
community transmission—followed by a plateau in late March, likely due to
social mobility reduction. The same qualitative dynamics were seen in COVID-
19 mortality counts, delayed by approximately 1 week. Although the qualitative
picture was similar across locales, the quantitative aspects of localized epidemics—
including initial rate of growth, infections/deaths per capita, duration of plateau,
and rapidity of resolution—were quite diverse across the country. Understanding
the origins of this diversity will be key to predicting how the relaxation of social
distancing, annual changes in weather, and static local demographic/population
characteristics will affect the resolution of the first wave of cases, and will drive
coming waves, prior to the availability of a vaccine.

The exponential growth rate of a spreading epidemic is dependent on the
biological features of the virus-host ecosystem—including the incubation time,
susceptibility of target cells to infection, and persistence of the virus particle outside
of the host—but, through its dependence on the transmission rate between hosts, it
is also a function of external factors such as population density, air humidity, and
the fraction of hosts that are susceptible. Initial studies have shown that SARS-
CoV-2 has a larger rate of exponential growth (or, alternatively, a lower doubling
time of cases1) than many other circulating human viruses [11]. For comparison,
the pandemic influenza of 2009, which also met a largely immunologically-naive
population, had a doubling time of 5–10 d [12, 13], while that of SARS-CoV-2 has
been estimated at 2–5 d [14, 15] (growth rates of ∼ 0.10 d−1 vs. ∼ 0.25 d−1). It is
not yet understood which factors contribute to this high level of infectiousness.

While the dynamics of an epidemic (e.g., cases over time) must be described by
numerical solutions to nonlinear models, the exponential growth rate, λ, usually has
a simpler dependence on external factors. Unlike case or mortality incidence num-
bers, the growth rate does not scale with population size. It is a directly measurable
quantity from the available incidence data, unlike, e.g., the reproduction number,
which requires knowledge of the serial interval distribution [16–18], something that
is difficult to determine empirically [19, 20]. Yet, the growth rate contains the same
threshold as the reproduction number (λ = 0 vs. R0 = 1), between a spreading
epidemic (or an unstable uninfected equilibrium) and a contracting one (or an
equilibrium that is resistant to flare-ups). Thus, the growth rate is an informative
direct measure on that space of underlying parameters.

In this work, we leverage the enormous data set of epidemics across the United
States to evaluate the impact of demographics, population density and structure,
weather, and non-pharmaceutical interventions (i.e., mobility restrictions) on the
exponential rate of growth of COVID-19. Following a brief analysis of the initial
spread in metropolitan regions, we expand the meaning of the exponential rate

1 The doubling time is ln 2 divided by the exponential growth rate.
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to encompass all aspects of a local epidemic—including growth, plateau and
decline—and use it as a tracer of the dynamics, where its time dependence and
geographic variation are dictated solely by these external variables and per capita
cumulative mortality. Finally, we use the results of that linear analysis to calibrate a
new nonlinear model—a renewal equation that utilizes the excursion probability
of a random walk to determine the incubation period—from which we develop
local predictions about the impact of social mobility relaxation, the level of herd
immunity, and the potential of rebound epidemics in the Summer and Fall of
2020. The methodology can be modified to make local predictions as the pandemic
evolves.

2 Results

2.1 Initial Growth of Cases in Metropolitan Regions Is
Exponential with Rate Depending on Mobility, Population,
Demographics, and Humidity

As an initial look at COVID-19’s arrival in the United States, we considered the
∼100 most populous metropolitan regions—using maps of population density to
select compact sets of counties representing each region (see [21])—and estimated
the initial exponential growth rate of cases in each region. We performed a linear
regression to a large set of demographic (sex, age, race) and population variables,
along with weather and social mobility [22] preceding the period of growth (Fig. 1).
In the best fit model (R2 = 0.75, BIC = −183), the baseline value of the initial
growth rate was λ = 0.21 d−1 (doubling time of 3.3 d), with average mobility 2
weeks prior to growth being the most significant factor (Fig. 1b). Of all variables
considered, only four others were significant: population density (including both
population-weighted density (PWD)—also called the “lived population density”
because it estimates the density for the average individual [23]—and population
sparsity, γ , a measure of the difference between PWD and standard population
density, see Methods), p < 0.001 and p = 0.006; specific humidity 2 weeks prior
to growth, p = 0.001; and median age, p = 0.04.

While mobility reduction certainly caused the “flattening” of case incidence in
every region by late-March, our results show (Fig. 1c) that it likely played a key role
in reducing the rate of growth in Boston, Washington, DC, and Los Angeles, but
was too late, with respect to the sudden appearance of the epidemic, to have such an
effect in, e.g., Detroit and Cleveland. In the most extreme example, Grand Rapids,
MI, seems to have benefited from a late arriving epidemic, such that its growth (with
a long doubling time of 7 d) occurred almost entirely post-lockdown.

Specific humidity, a measure of absolute humidity, has been previously shown
to be inversely correlated with respiratory virus transmission [24–27]. Here, we
found it to be a significant factor, but weaker than population density and mobility
(Fig. 1c). It could be argued that Dallas, Los Angeles, and Atlanta saw a small
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Fig. 1 Mobility and COVID-19 incidence data examples, and the results of linear regression to
extracted initial exponential growth rates, λexp, in the top 100 metropolitan regions. (a) Three
example cities with different initial growth rates. Data for Google mobility (blue points), daily
reported cases (black points), and weather (red and blue points, bottom) are shown with a logistic
fit to cases (green line). Data at or below detection limit were excluded from fits (dates marked by
red points). Thin grey bars at base of cases graphs indicate region considered “flat”, with right end
indicating the last point used for logistic fitting; averaging over “flat” values generates the thick
grey bars to guide the eye. [See Supp. Matt. in [21] for additional information and for complete
data sets for all metropolitan regions.] (b) Weighted linear regression results in fit to λexp for
all metropolitan regions. (c) Effect of each variable on growth rate (i.e., �λ values) for those
regions with well-estimated case and death rates; white/yellow indicates a negative effect on λ, red
indicates positive

benefit from higher humidity at the time of the epidemic’s arrival, while the dry
late-winter conditions in the Midwest and Northeast were more favorable to rapid
transmission of SARS-CoV-2.

2.2 Exponential Growth Rate of Mortality as a Dynamical,
Pan-Epidemic, Measure

In the remainder of this report, we consider the exponential rate of growth (or
decay) in local confirmed deaths due to COVID-19. The statistics of mortality is
poorer compared to reported cases, but it is much less dependent on unknown factors
such as the criteria for testing, local policies, test kit availability, and asymptomatic
individuals [28]. Although there is clear evidence that a large fraction of COVID-
19 mortality is missed in the official counts (e.g., [29, 30]), mortality is likely less
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Fig. 2 COVID-19 mortality incidence (7-day rolling average, left) and exponential growth rate
(λ14, determined by regression of the logged mortality data over 14-day windows, right) for the
four US counties with >2400 confirmed COVID-19 reported deaths (as of 8th June, 2020)

susceptible to rapid changes in reporting, and, as long as the number of reported
deaths is a monotonic function of the actual number of deaths (e.g., a constant
fraction, say 50%), the sign of the exponential growth rate will be unchanged, which
is the crucial measure of the success in pandemic management.

To minimize the impact of weekly changes, such as weekend reporting lulls,
data dumps, and mobility changes from working days to weekends, we calculate the
regression of ln

[
Mortality

]
over a 14-day interval, and assign this value, λ14(t), and

its standard error to the last day of the interval. Since only the data for distinct 2-
week periods are independent, we multiply the regression errors by

√
14 to account

for correlations between the daily estimates. Together with a “rolling average” of the
mortality, this time-dependent measure of the exponential growth rate provides, at
any day, the most up-to-date information on the progression of the epidemic (Fig. 2).

In the following section, we consider a linear fit to λ14, to determine the
statistically-significant external (non-biological) factors influencing the dynamics
of local exponential growth and decline of the epidemic. We then develop a first-
principles model for λ14 that allows for extrapolation of these dependencies to
predict the impact of future changes in social mobility and climate.

2.3 Epidemic Mortality Data Explained by Mobility,
Population, Demographics, Depletion of Susceptible
Population and Weather, Throughout the First Wave of
COVID-19

We considered a spatio-temporal dataset containing 3933 estimates of the exponen-
tial growth measure, λ14, covering the 3 month period of 8 March 2020–8 June
2020 in the 187 US counties for which information on COVID-19 mortality and
all potential driving factors, below, were available (the main barrier was social
mobility information, which limited us to a set of counties that included 69% of
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Table 1 Joint linear fit to λ14(t) data (Top). Any dependence with t-statistic below 2.5σ is
considered not statistically significant. Joint linear fit to λ14(t), including only statistically
significant dependencies (Bottom). For all coefficients, the population-weighted baseline is
subtracted from the linear variable

Estimate Std. err t-Statistic

Joint fit to all potential drivers

Baseline mortality growth rate λ14 0.195 0.011 17.2

COVID death fraction −59.4 6.1 −9.7

Social mobility (2wks prior) 0.00238 0.00028 8.5

ln(population weighted density) 8.24 0.0412 0.0058 7.1

Social mobility (4wks prior) 0.00122 0.00019 6.6

Population sparsity 0.188 −0.249 0.063 −3.9

log(annual death) 4.04 −0.0301 0.0091 −3.3

Median age 37.47 0.0038 0.0012 3.0

People per household 2.76 0.023 0.014 1.6

Specific humidity (2wks prior) 5.92 g/kg −0.0033 0.0031 −1.1

Temperature (2wks prior) 13.11 C −0.00083 0.0013 −0.6

Temperature (4wks prior) 11.60 C −0.00060 0.0014 −0.4

Specific humidity (4wks prior) 5.53 g/kg 0.00058 0.0032 0.2

Joint fit to statistically significant drivers

Baseline mortality growth rate λ14 0.198 0.011 18.7

COVID death fraction −56.7 5.9 −9.7

Social mobility (2wks prior) 0.00236 0.00027 8.8

Social mobility (4wks prior) 0.00131 0.00017 7.6

ln(population weighted density) 8.24 0.0413 0.0058 7.2

Population sparsity 0.188 −0.260 0.061 −4.3

Specific humidity (2wks prior) 5.92 g/kg −0.0047 0.0011 −4.1

log(annual death) 4.04 −0.0324 0.0088 −3.7

Median age 37.48 0.0040 0.0012 3.3

US mortality). A joint, simultaneous, linear fit of these data to 12 potential driving
factors (Table 1) revealed only 7 factors with independent statistical significance.
Re-fitting only to these variables returned the optimal fit for the considered factors
(BIC = −5951; R2 = 0.674).

We found, not surprisingly, that higher population density, median age, and social
mobility correlated with positive exponential growth, while population sparsity,
specific humidity, and susceptible depletion correlated with exponentially declining
mortality. Notably the coefficients for each of these quantities was in the 95%
confidence intervals of those found in the analysis of metropolitan regions (and
vice versa). Possibly the most surprising dependency was the negative correlation,
at � −3.7σ between λ14 and the total number of annual deaths in the county.
In fact, this correlation was marginally more significant than a correlation with
log(population), which was −3.3σ . One possible interpretation of this negative
correlation is that the number of annual death is a proxy for the number of potential
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outbreak clusters. The larger the number of clusters, the longer it might take for the
epidemic to spread across their network, which would (at least initially) slow down
the onset of the epidemic.

2.4 Nonlinear Model

To obtain more predictive results, we developed a mechanistic nonlinear model
for infection (see [21] for details). We followed the standard analogy to chemical
reaction kinetics (infection rate is proportional to the product of susceptible and
infectious densities), but defined the generation interval (approximately the incu-
bation period) through the excursion probability in a 1D random walk, modulated
by an exponential rate of exit from the infected class. This approach resulted in a
renewal equation [19, 31, 32], with a distribution of generation intervals that is more
realistic than that of standard SIR/SEIR models, and which could be solved formally
(in terms of the Lambert W function) for the growth rate in terms of the infection
parameters:

λ = 1

2τ

[

W

(√
βSτ

2

)]2

− d (1)

The model has four key dependencies, which we describe here, along with our
assumptions about their own dependence on population, demographic, and climate
variables. As mortality (on which our estimate of growth rate is based) lags infection
(on which the renewal equation is based), we imposed a fixed time shift of �t for
time-dependent variables:

1. We assumed that the susceptible population, which feeds new infections and
drives the growth, is actually a sub-population of the community, consisting
of highly-mobile and frequently interacting individuals, and that most deaths
occurred in separate sub-population of largely immobile non-interacting indi-
viduals. Under these assumptions, we found (see Supp. Mat. in [21]) that the
susceptible density, S(t), could be estimated from the cumulative per capita death
fraction, fD , as:

S(t −�t) = S(0) exp [−CD fD(t)] (fD = Dtot/N) ,

where Dtot is the cumulative mortality count, N is the initial population, and the
initial density is S(0) = k PWD.

2. We assumed that the logarithm of the “rate constant” for infection, β, depended
linearly on social mobility, m, specific humidity, h, population sparsity, γ , and
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total annual death, AD , as:

ln [β (M,H, γ, AD)] = ln [β0]

+ CM
(M − M̄) + CH

(H − H̄)

+ Cγ (γ − γ̄ )+ CAD
(
AD − ĀD

)
(2)

where a barred variable represents the (population-weighted) average value over
all US counties, and where the mobility and humidity factors were time-shifted
with respect to the growth rate estimation window: M = m(t −�t) and H =
h (t −�t).

3. The characteristic time scale to infectiousness, τ , is intrinsic to the biology and
therefore we assumed it would depend only on the median age of the population,
A. We assumed a power law dependence:

τ = τ0

(
A

A0

)CA
(3)

where we fixed the pivot age, A0, to minimize the error in τ0.
4. The exponential rate of exit from the infected class, d, was assumed constant,

since we found no significant dependence for it on other factors in our analysis of
US mortality. From the properties of the Lambert W function, when the infection
rate or susceptibility density approach zero—through mobility restrictions or
susceptible depletion—the growth rate will tend to λ ≈ −d, its minimum value.

With these parameterizations, we performed a nonlinear regression to λ14(t)

using the entire set of US county mortality incidence time series (Table 2).

Table 2 Best-fit parameters for the nonlinear model using parametrization defined in the text

Parameter Best-fit ± Std. err Description

τ = τ0(Median Age/26.2 years)CA Time from exposure to contagiousness

τ0(day) 160 ± 58 Normalization

CA −2.26 ± 0.95 Age dependence

d−1(day) 17.6 ± 2.2 Time from exposure to
quarantine/recovery

CD 3460 ± 610 Conversion constant, fD → fI

β: Eq. (2) Rate constant for infection

ln
[
kβ0τ

−2
0 (m2/day3)

]
0.37 ± 1.25 Normalization

100CM 8.08 ± 1.76 Dependence on social mobility

CH −0.154 ± 0.055 Dependence on specific humidity

Cγ −5.52 ± 2.35 Dependence on population sparsity

CAD −1.05 ± 0.25 Dependence on total annual deaths
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Compared to the linear model of the previous section (Table 1b), the fit improved by
7.6σ (BIC = −6008; R2 = 0.724), despite both having 9 free parameters. Through
the estimated parameter values, the model makes predictions for an individual’s
probability of becoming infectious, and the distributions of incubation period and
generation interval, all as a function of the median age of the population (see
Supplementary Material in [21]).

The model was very well fit to the mortality growth rate measurements for
counties with a high mortality (Fig. 3). More quantitatively, the scatter of measured

Fig. 3 Nonlinear model prediction (Eq. 1, red) for the actual (blue) mortality growth rate, in the
six counties with highest reported death. Bands show 1-σ confidence region for both the model
mean and the λ14 value
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Fig. 4 Forecasts of COVID-19 mortality (orange)—based on the best-fit nonlinear model to data
prior to May 16th, 2020—versus actual reported mortality (blue) for 4 large US counties. The 68%
confidence range (orange regions) were determined from 100 random 60-day long simulations (see
Supplementary Methods in [21]). The vertical red lines indicate June 21st. Forecasts for most US
counties can be found at our online dashboard: https://wolfr.am/COVID19Dash

growth rates around the best-fit model predictions was (on average) only 13% larger
than the measurement errors, independent of the population of the county.2

Importantly, when the model was calibrated on only a subset of the data—e.g.,
all but the final month for which mobility data is available—its 68% confidence
prediction for the remaining data was accurate (Fig. 4) given the known mobility
and weather data for that final month. This suggests that the model, once calibrated
on the first wave of COVID-19 infections, can make reliable predictions about the
ongoing epidemic, and future waves, in the United States.

2.5 Predictions for Relaxed Mobility Restrictions, the Onset
of Summer, and the Potential Second Wave

Possibly the most pressing question for the management of COVID-19 in a
particular community is the combination of circumstances at which the virus fails
to propagate, i.e., at which the growth rate, estimated here by λ14, becomes negative
(or, equivalently, the reproduction number Rt falls below one). In the absence of
mobility restrictions this is informally called the threshold for “herd immunity,”

2 See [21] for more detailed discussion of Error Diagnostics.

https://wolfr.am/COVID19Dash
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which is usually achieved by mass vaccination (e.g., [33, 34]). Without a vaccine,
however, ongoing infections and death will deplete the susceptible population and
thus decrease transmission. Varying the parameters of the nonlinear model individ-
ually about their Spring 2020 population-weighted mean values (Fig. 5) suggests
that this threshold will be very much dependent on the specific demographics,
geography, and weather in the community, but it also shows that reductions in social
mobility can significantly reduce transmission prior the onset of herd immunity.

To determine the threshold for herd immunity in the absence or presence of social
mobility restrictions, we considered the “average US county” (i.e., a region with
population-weighted average characteristics), and examined the dependence of the
growth rate on the cumulative mortality. We found that in the absence of social
distancing, a COVID-19 mortality rate of 0.13% (or 1300 per million population)
would bring the growth rate to zero. However, changing the population density of
this average county shows that the threshold can vary widely (Fig. 5).

Examination of specific counties showed that the mortality level corresponding
to herd immunity varies from 10 to 2500 per million people (Fig. 6). At the current
levels of reported COVID-19 mortality, we found that, as of June 22nd, 2020,
only 128 ± 55 out of 3142 counties (inhabiting 9.4 ± 2.1% of US population)
have surpassed this threshold at 68% confidence level (Fig. 7). Notably, New York
City, with the highest reported per capita mortality (2700 per million) has achieved
mobility-independent herd immunity at the 10σ confidence level, according to
the model (Fig. 8). A few other large-population counties in New England, New
Jersey, Michigan, Louisiana, Georgia and Mississippi that have been hard hit by the
pandemic also appear to be at or close to the herd immunity threshold. This is not
the case for most of the United States, however (Fig. 7). Nationwide, we predict that
COVID-19 herd immunity would only occur after a death toll of 340, 000±61, 000,
or 1058 ± 190 per million of population.

We found that the approach to the herd immunity threshold is not direct, and
that social mobility restrictions and other non-pharmaceutical interventions must be
applied carefully to avoid excess mortality beyond the threshold. In the absence
of social distancing interventions, a typical epidemic will “overshoot” the herd
immunity limit (e.g., [35, 36]) by up to 300%, due to ongoing infections (Fig. 8). At
the other extreme, a very strict “shelter in place” order would simply delay the onset
of the epidemic; but if lifted (see Figs. 8 and 9), the epidemic would again overshoot
the herd immunity threshold. A modest level of social distancing, however—e.g., a
33% mobility reduction for the average US county—could lead to fatalities “only” at
the level of herd immunity. Naturally, communities with higher population density
or other risk factors (see Fig. 5), would require more extreme measures to achieve
the same.
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Fig. 5 Dependence and 68% confidence bands of the mortality growth rate—as specified by
the nonlinear model (Eq. 1)—on various parameters for an “average county.” All parameters
not being varied are fixed at their population-weighted mean values (as of 8th June, 2020):
log10[PWD/km−2)] = 3.58, population sparsity = 0.188, COVID death fraction = 5.1 × 10−4

(510 deaths/million population), Median age = 37.5 yr, log(annual death) = 4.04, social mobility
M̄ = −44%, and specific humidity H̄ = 5.7 g/kg
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Fig. 6 Histogram of reported COVID-19 deaths per million for all US counties, showing the
proportion that have passed “herd immunity” threshold, according to fit of the nonlinear model

Avoiding the level of mortality required for herd immunity will require long-
lasting and effective non-pharmaceutical options, until a vaccine is available. The
universal use of face masks has been suggested for reducing the transmission
of SARS-CoV-2, with a recent meta-analysis [37] suggesting that masks can
suppress the rate of infection by a factor of 0.07–0.34 (95% CI), or equivalently
� ln(transmission) = −1.9 ± 0.4 (at 1σ ). Using our model’s dependence of the
infection rate constant on mobility, this would correspond to an equivalent social
mobility reduction of �M̄mask � −24% ± 9%. Warmer, more humid weather
has also considered a factor that could slow the epidemic (e.g., [38–40]). Annual
changes in specific humidity are �H̄ � 6 g/kg (Figure 10b in [21]), which can be
translated in our model to an effective mobility decrease of �M̄summer � −12% ±
5%. Combining these two effects could, in this simple analysis, yield a modestly
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Fig. 7 Top: United States counties that have passed (blue), or are within (cyan), the threshold
for “herd immunity” at the 1-σ level, as predicted by the nonlinear model. Bottom: Predicted
confidence in the growth of COVID-19 outbreak (defined as predicted daily growth rate divided
by its uncertainty), for all counties should they return today to their baseline (pre-COVID) social
mobility. Counties that have approached the threshold of herd immunity have lower growth rates
due to the depletion of susceptible individuals
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Fig. 8 Nonlinear model prediction of the exponential growth rate, λ14, vs. cumulative COVID-19
mortality (top panels), assuming baseline social mobility, M̄ = 0, in the “average US county” (see
caption of Fig. 5) on the left, and New York City, on the right. The curves show 68% predictions for
the nonlinear model (Table 2), while the points with errorbars are linear fits to all the data within
bins of death fraction. The threshold for “herd immunity” (λ14 = 0) is reached at a mortality of
approximately 1300 (1700) per million for an average county (NYC), but this would be higher in
counties with more unfavorable values of the drivers. The eventual mortality burden of the average
county will be determined by its path through a “phase space” of Daily vs. Total Mortality (bottom
panel). An epidemic without intervention (red curves, with the particular trajectory starting at zero
death shown in bold) will pass the threshold for herd immunity (1300 deaths per million; note that
at zero daily deaths this is a fixed point) and continue to three times that value due to ongoing
infections. A modest 33% reduction in social mobility (blue curves), however, leads to mortality at
“only” the herd immunity level (the green disk). The black curve on the bottom right panel shows
the 7-day rolling average of reported mortality for NYC, which appears to have “overshot” the
“herd immunity threshold”

effective defense for the summer months: �M̄mask+ summer � −37% ± 10%.
Therefore, this could be a reasonable strategy for most communities to manage
the COVID-19 epidemic at the aforementioned −33% level of mobility needed to
arrive at herd immunity with the least excess death. More stringent measures would
be required to keep mortality below that level. Of course, this general prescription
would need to be fine-tuned for the specific conditions of each community.
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Fig. 9 Epidemic Phase Portraits for the same four counties as in Fig. 4, similar to the Phase
portrait in Fig. 8. The blue curves are for the county’s average Social Mobility during Feb. 15
through June 12, 2020, while red curves/arrows are at normal (pre-covid) social mobility. The
thick black curve is the 7-day rolling average of the official reported mortality, while the green
disk shows the threshold for “herd immunity”

3 Discussion and Conclusions

By simultaneously considering the time series of mortality incidence in every
US county, and controlling for the time-varying effects of local social distancing
interventions, we demonstrated for the first time a dependence of the epidemic
growth of COVID-19 on population density, as well as other climate, demographic,
and population factors. We further constructed a realistic, but simple, first-principles
model of infection transmission that allowed us to extend our heuristic linear model
of the dataset into a predictive nonlinear model, which provided a better fit to the
data (with the same number of parameters), and which also accurately predicted
late-time data after training on only an earlier portion of the data set. This suggests
that the model is well-calibrated to predict future incidence of COVID-19, given
realistic predictions/assumptions of future intervention and climate factors. We
summarized some of these predictions in the final section of Results, notably that
only a small fraction of US counties (with less than 10% of the population) seem to
have reached the level of herd immunity, and that relaxation of mobility restrictions
without counter-measures (e.g., universal mask usage) will likely lead to increased
daily mortality rates, beyond that seen in the Spring of 2020.

In any epidemiological model, the infection rate of a disease is assumed
proportional to population density [41], but, to our knowledge, its explicit effect
in a real-world respiratory virus epidemic has not been demonstrated. The universal
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reach of the COVID-19 pandemic, and the diversity of communities affected have
provided an opportunity to verify this dependence. Indeed, as we show here, it
must be accounted for to see the effects of weaker drivers, such as weather and
demographics. A recent study of COVID-19 in the United States, working with a
similar dataset, saw no significant effect due to population density [42], but our
analysis differs in a number of important ways. First, we have taken a dynamic
approach, evaluating the time-dependence of the growth rate of mortality incidence,
rather than a single static measure for each county, which allowed us to account for
the changing effects of weather, mobility, and the density of susceptible individuals.
Second, we have included an explicit and real-time measurement of social mobility,
i.e., cell phone mobility data provided by Google [22], allowing us to control for the
dominant effect of intervention. Finally, and perhaps most importantly, we calculate
for each county an estimate of the “lived” population density, called the population-
weighted population density (PWD) [23], which is more meaningful than the
standard population per political area. As with any population-scale measure, this
serves as a proxy—here, for estimating the average rate of encounters between
infectious and susceptible people—but we believe that PWD is a better proxy than
standard population density, and it is becoming more prevalent, e.g., in census work
[43, 44].

We also found a significant dependence of the mortality growth rate on specific
humidity (although since temperature and humidity were highly correlated, a
replacement with temperature was approximately equivalent), indicating that the
disease spread more rapidly in drier (cooler) regions. There is a large body of
research on the effects of temperature and humidity on the transmission of other
respiratory viruses [27, 45], specifically influenza [46]. Influenza was found to trans-
mit more efficiently between guinea pigs in low relative-humidity and temperature
conditions [24], although re-analysis of this work pointed to absolute humidity (e.g.,
specific humidity) as the ultimate controller of transmission [25]. Although the
mechanistic origin of humidity’s role has not been completely clarified, theory and
experiments have suggested a snowballing effect on small respiratory droplets that
cause them to drop more quickly in high-humidity conditions [47–49], along with a
role for evaporation and the environmental stability of virus particles [49, 50]. It has
also been shown that the onset of the influenza season [26, 51]—which generally
occurs between late-Fall and early-Spring, but is usually quite sharply peaked for
a given strain (H1N1, H3N2, or Influenza B)—and its mortality [46] are linked to
drops in absolute humidity. It is thought that humidity or temperature could be the
annual periodic driver in the resonance effect causing these acute seasonal outbreaks
of influenza [52, 53], although other influences, such as school openings/closings
have also been implicated [54]. While little is yet known about the transmission of
SARS-CoV-2 specifically, other coronaviruses are known to be seasonal [45, 55],
and there have been some preliminary reports of a dependence on weather factors
[56, 57]. We believe that our results represent the most definitive evidence yet for
the role of weather, but emphasize that it is a weak, secondary driver, especially in
the early stages of this pandemic where the susceptible fraction of the population
remains large [58]. Indeed, the current early-summer rebound of COVID-19 in the
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relatively dry and hot regions of the Southwest suggests that the disease spread will
not soon be controlled by seasonality.

We developed a new model of infection in the framework of a renewal equation
(see, e.g., [32] and references therein), which we could formally solve for the
exponential growth rate. The incubation period in the model was determined by a
random walk through the stages of infection, yielding a non-exponential distribution
of the generation interval, thus imposing more realistic delays to infectiousness than,
e.g., the standard SEIR model. In this formulation, we did not make the standard
compartmental model assumption that the infection of an individual induces an
autonomous, sequential passage from exposure, to infectiousness, to recovery or
death; indeed, the model does not explicitly account for recovered or dead individ-
uals. This freedom allows for, e.g., a back passage from infectious to noninfectious
(via the underlying random walk) and a variable rate of recovery or death. We
assumed only that the exponential growth in mortality incidence matched (with
delay) that of the infected incidence—the primary dynamical quantity in the renewal
approach—and we let the cumulative dead count predict susceptible density—the
second dynamical variable in the renewal approach—under the assumption that
deaths arise from a distinct subset of the population, with lower mobility behavior
than those that drive infection (see [21]). Therefore, we fitted the model to the
(rolling 2-week estimates of the) COVID-19 mortality incidence growth rate values,
λ14, for all counties and all times, and used the per capita mortality averaged over
that period, fD , to determine susceptible density. Regression to this nonlinear model
was much improved over linear regression, and, once calibrated on an early portion
of the county mortality incidence time series, the model accurately predicted the
remaining incidence.

Because we accounted for the precise effects of social mobility in fitting our
model to the actual epidemic growth and decline, we were then able to, on a
county-by-county basis, “turn off” mobility restrictions and estimate the level of
cumulative mortality at which SARS-CoV-2 would fail to spread even without social
distancing measures, i.e., we estimated the threshold for “herd immunity.” Meeting
this threshold prior to the distribution of a vaccine should not be a goal of any
community, because it implies substantial mortality, but the threshold is a useful
benchmark to evaluate the potential for local outbreaks following the first wave of
COVID-19 in Spring 2020. We found that a few counties in the United States have
indeed reached herd immunity in this estimation—i.e., their predicted mortality
growth rate, assuming baseline mobility, was negative—including counties in the
immediate vicinity of New York City, Detroit, New Orleans, and Albany, Georgia.
A number of other counties were found to be at or close to the threshold, including
much of the greater New York City and Boston areas, and the Four Corners, Navajo
Nation, region in the Southwest. All other regions were found to be far from the
threshold for herd immunity, and therefore are susceptible to ongoing or restarted
outbreaks. These determinations should be taken with caution, however. In this
analysis, we estimated that the remaining fraction of susceptible individuals in the
counties at or near the herd immunity threshold was in the range of 0.001% to
5% (see [21]). This is in strong tension with initial seroprevalence studies [59, 60]
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which placed the fraction of immune individuals in New York City at 7% in late
March and 20% in late April, implying that perhaps 75% of that population remains
susceptible today. We hypothesize that the pool of susceptible individuals driving
the epidemic in our model is a subset of the total population—likely those with
the highest mobility and geographic reach—while a different subset, with very low
baseline mobility, contributes most of the mortality (see [21]). Thus, the near total
depletion of the susceptible pool we see associated with herd immunity corresponds
to the highly-mobile subset, while the low-mobility subset could remain largely
susceptible. One could explicitly consider such factors of population heterogeneity
in a model—e.g., implementing a saturation of infectivity as a proxy for a clustering
effect [61–64]—but we found (in results not shown) that the introduction of
additional of parameters left portions of the model unidentifiable. Despite these
cautions, it is interesting to note that the epidemic curves (mortality incidence over
time) for those counties that we have predicted an approach to herd immunity
are qualitatively different than those we have not. Specifically, the exponential
rise in these counties is followed by a peak and a sharp decline—rather than the
flattening seen in most regions—which is a typical feature of epidemic resolution
by susceptible depletion.

At the time of this writing, in early Summer 2020, confirmed cases are again
rising sharply in many locations across the United States—particularly in areas of
the South and West that were spared significant mortality in the Spring wave. The
horizon for an effective and fully-deployed vaccine still appears to be at least a year
away. Initial studies of neutralizing antibodies in recovered COVID-19 patients,
however, suggest a waning immune response after only 2–3 months, with 40%
of those that were asymptomatic becoming seronegative in that time period [65].
Although the antiviral remdesivir [66–68] and the steroid Dexamethasone [69] have
shown some promise in treating COVID-19 patients, the action of remdesivir is
quite weak, and high-dose steroids can only be utilized for the most critical cases.
Therefore, the management of this pandemic will likely require non-pharmaceutical
intervention—including universal social distancing and mask-wearing, along with
targeted closures of businesses and community gathering places—for years in the
future. The analysis and prescriptive guidance we have presented here should help to
target these approaches to local communities, based on their particular demographic,
geographic, and climate characteristics, and can be facilitated through our http://
mylocalcovid.uwaterloo.ca/ online simulator dashboard. Finally, although we have
focused our analysis on the United States, due to the convenience of a diverse and
voluminous data set, the method and results should be applicable to any community
worldwide, and we intend to extend our analysis in forthcoming work.

Acknowledgments We are indebted to helpful comments and discussions by our colleagues, in
particular Bruce Bassett, Ghazal Geshnizjani, David Spergel, and Lee Smolin. NA is partially
supported by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is
supported in part by the Government of Canada through the Department of Innovation, Science and
Economic Development Canada and by the Province of Ontario through the Ministry of Colleges
and Universities. BPH acknowledges sabbatical support from Grand Valley State University, and
is grateful to the hospitality of the University of Waterloo during his stay.

http://mylocalcovid.uwaterloo.ca/
http://mylocalcovid.uwaterloo.ca/


20 N. Afshordi et al.

References

1. N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, et al.,
The Lancet 395(10223), 507 (2020)

2. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, et al. 2020
Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New
England Journal of Medicine 382, 1199–1207, doi: https://doi.org/10.1056/NEJMoa2001316.

3. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K,
Wilkerson S, Tural A, et al. 2020 First case of 2019 novel coronavirus in the United States. New
England Journal of Medicine 382, 929–936, doi: https://doi.org/10.1056/NEJMoa2001191.

4. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM, Sun F, Jit M,
Munday JD, Davies N, Gimma A, van Zandvoort K, Gibbs H, Hellewell J, Jarvis CI, Cliord
S, Quilty BJ, Bosse NI, Abbott S, Klepac P, Flasche S. 2020 Early dynamics of transmission
and control of COVID-19: A mathematical modelling study. The Lancet Infectious Diseases
20, 553–558, doi: https://doi.org/10.1016/S1473-3099(20)30144-4.

5. Chu HY, Englund JA, Starita LM, Famulare M, Brandstetter E, Nickerson DA, Rieder MJ,
Adler A, Lacombe K, Kim AE, et al. 2020 Early detection of COVID-19 through a citywide
pandemic surveillance platform. New England Journal of Medicine 383, 185–187.

6. Ladner JT, Larsen BB, Bowers JR, Hepp CM, Bolyen E, Folkerts M, Sheridan K, Pfeier A,
Yaglom H, Lemmer D, Sahl JW, Kaelin EA, Maqsood R, Bokulich NA, Quirk G, Watts TD,
Komatsu KK, Waddell V, Lim ES, Caporaso JG, Engelthaler DM, Worobey M, Keim P, Fraser
CM. 2020 An early pandemic analysis of SARS-CoV-2 population structure and dynamics in
Arizona. mBio 11, e02107-20, doi: https://doi.org/10.1128/mBio.02107-20.

7. Gonzalez-Reiche AS, Hernandez MM, Sullivan MJ, Ciferri B, Alshammary H, Obla A, Fabre
S, Kleiner G, Polanco J, Khan Z, et al. 2020 Introductions and early spread of SARS-CoV-2 in
the New York City area. Science 369, 297–301.

8. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, Rambaut A, Suchard MA,
Wertheim JO, Lemey P. 2020 The emergence of SARS-CoV-2 in Europe and North America.
Science 370, 564–570.

9. X. Deng, W. Gu, S. Federman, L. Du Plessis, O. Pybus, N. Faria, C. Wang, G. Yu, C.Y. Pan,
H. Guevara, et al., Science (2020). https://doi.org/10.1126/science.abb9263

10. Fauver JR, Petrone ME, Hodcroft EB, Shioda K, Ehrlich HY, Watts AG, Vogels CB, Brito AF,
Alpert T, Muyombwe A, et al. 2020 Coast-to-coast spread of SARS-CoV-2 during the early
epidemic in the United States. Cell 181, 990–996.

11. Park SW, Bolker BM, Champredon D, Earn DJ, Li M, Weitz JS, Grenfell BT, Dusho_J. 2020
Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty:
Framework and applications to the novel coronavirus (SARS-CoV-2) outbreak. Journal of the
Royal Society Interface 17, 20200144.

12. H. Yu, S. Cauchemez, C.A. Donnelly, L. Zhou, L. Feng, N. Xiang, J. Zheng, M. Ye, Y. Huai,
Q. Liao, et al., Emerging infectious diseases 18(5), 758 (2012)

13. A.D. Storms, M.D. Van Kerkhove, E. Azziz-Baumgartner, W.K. Lee, M.A. Widdowson, N.M.
Ferguson, A.W. Mounts, Influenza and other respiratory viruses 7(6), 1328 (2013)

14. S. Sanche, Y. Lin, C. Xu, E. Romero-Severson, N. Hengartner, R. Ke, Emerging infectious
diseases 26(7) (2020)

15. B. Oliveiros, L. Caramelo, N.C. Ferreira, F. Caramelo, medRxiv (2020)
16. J. Wallinga, M. Lipsitch, Proceedings of the Royal Society B: Biological Sciences 274(1609),

599 (2007)
17. M. Roberts, J. Heesterbeek, Journal of mathematical biology 55(5–6), 803 (2007)
18. Dusho_J, Park SW. 2021 Speed and strength of an epidemic intervention. Proceedings of the

Royal Society B 288, 20201556.
19. D. Champredon, J. Dushoff, Proceedings of the Royal Society B: Biological Sciences

282(1821), 20152026 (2015)
20. H. Nishiura, Mathematical Biosciences & Engineering 7(4), 851 (2010)

https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1056/NEJMoa2001191
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.1128/mBio.02107-20
https://doi.org/10.1126/science.abb9263


Diverse Drivers of COVID-19 in the United States 21

21. N. Afshordi, B. P. Holder, M. Bahrami, D. Lichtblau, arXiv preprint arXiv:2007.00159 (2020)
22. J. Fitzpatrick, D. Karen, COVID-19 community mobility reports. Tech. rep., Google (2020).

Available at: https://www.google.com/covid19/mobility/
23. J. Craig, Population Trends 39, 16 (1985)
24. A. Lowen, S. Mubareka, J. Steel, P. Palese, 3(10), e151 (2007). https://doi.org/10.1371/journal.

ppat.0030151
25. J. Shaman, M. Kohn, Proceedings of the National Academy of Sciences 106(9), 3243 (2009)
26. J. Shaman, E. Goldstein, M. Lipsitch, American journal of epidemiology 173(2), 127 (2011)
27. E. Kudo, E. Song, L.J. Yockey, T. Rakib, P.W. Wong, R.J. Homer, A. Iwasaki, Proceedings of

the National Academy of Sciences 116(22), 10905 (2019)
28. Pearce N, Vandenbroucke JP, VanderWeele TJ, Greenland S. 2020 Accurate statistics on

COVID-19 are essential for policy guidance and decisions. American Journal of Public Health
110, 949–951, doi: https://doi.org/10.2105/AJPH.2020.305708.

29. D.A. Leon, V.M. Shkolnikov, L. Smeeth, P. Magnus, M. Pechholdová, C.I. Jarvis, The Lancet
395(10234), e81 (2020)

30. C. Modi, V. Boehm, S. Ferraro, G. Stein, U. Seljak, medRxiv (2020). https://doi.org/10.1101/
2020.04.15.20067074. URL https://www.medrxiv.org/content/early/2020/05/14/2020.04.15.
20067074

31. J. Heesterbeek, K. Dietz, Statistica Neerlandica 50(1), 89 (1996)
32. D. Champredon, J. Dushoff, D.J. Earn, SIAM Journal on Applied Mathematics 78(6), 3258

(2018)
33. T.J. John, R. Samuel, European Journal of Epidemiology 16(7), 601 (2000). URL https://doi.

org/10.1023/A:1007626510002
34. P. Fine, K. Eames, D.L. Heymann, Clinical Infectious Diseases 52(7), 911 (2011). URL https://

doi.org/10.1093/cid/cir007
35. A. Handel, I.M. Longini Jr, R. Antia, Proceedings of the Royal Society B: Biological Sciences

274(1611), 833 (2007)
36. I.C.H. Fung, R. Antia, A. Handel, PLoS One 7(6), e36573 (2012)
37. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schunemann HJ, El-harakeh A, Bognanni

A, Lot T, Loeb M, et al. 2020 Physical distancing, face masks, and eye protection to prevent
person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-
analysis. The Lancet 395, 1973–1987.

38. Wang J, Tang K, Feng K, Lin X, Lv W, Chen K, Wang F. 2021 Impact of temperature and
relative humidity on the transmission of COVID-19: A modelling study in China and the United
States. BMJ Open 11, e043863.

39. A. Notari, arXiv e-prints arXiv:2003.12417 (2020)
40. R. Xu, H. Rahmandad, M. Gupta, C. DiGennaro, N. Ghaffarzadegan, H. Amini, M.S. Jalali,

medRxiv (2020). https://doi.org/10.1101/2020.05.05.20092627. URL https://www.medrxiv.
org/content/early/2020/05/24/2020.05.05.20092627

41. M.C. de Jong, O. Diekmann, H. Heesterbeek, in Epidemic Models: Their structure and relation
to data, ed. by D. Mollison (Cambridge University Press, Cambridge, 1995), pp. 84–94

42. S. Hamidi, S. Sabouri, R. Ewing, Journal of the American Planning Association 0(0), 1 (2020).
URL https://doi.org/10.1080/01944363.2020.1777891

43. Dorling D, Atkins D. 1995 Population density, change and concentration in Great Britain 1971,
1981 and 1991, number 58 in Studies on Medical and Population Subjects, London: HMSO.

44. S.G. Wilson, Patterns of metropolitan and micropolitan population change: 2000 to 2010 (US
Department of Commerce, Economics and Statistics Administration, 2012)

45. M. Moriyama, W.J. Hugentobler, A. Iwasaki, Annual Review of Virology 7(1), null (2020).
URL https://doi.org/10.1146/annurev-virology-012420-022445. PMID: 32196426

46. A.I. Barreca, J.P. Shimshack, American Journal of Epidemiology 176(suppl_7), S114 (2012).
URL https://doi.org/10.1093/aje/kws259

47. R. Tellier, Journal of the Royal Society Interface 6(suppl_6), S783 (2009)
48. J.D. Noti, F.M. Blachere, C.M. McMillen, W.G. Lindsley, M.L. Kashon, D.R. Slaughter, D.H.

Beezhold, PloS one 8(2), e57485 (2013)

https://www.google.com/covid19/mobility/
https://doi.org/10.1371/journal.ppat.0030151
https://doi.org/10.1371/journal.ppat.0030151
https://doi.org/10.2105/AJPH.2020.305708
https://doi.org/10.1101/2020.04.15.20067074
https://doi.org/10.1101/2020.04.15.20067074
https://www.medrxiv.org/content/early/2020/05/14/2020.04.15.20067074
https://www.medrxiv.org/content/early/2020/05/14/2020.04.15.20067074
https://doi.org/10.1023/A:1007626510002
https://doi.org/10.1023/A:1007626510002
https://doi.org/10.1093/cid/cir007
https://doi.org/10.1093/cid/cir007
https://doi.org/10.1101/2020.05.05.20092627
https://www.medrxiv.org/content/early/2020/05/24/2020.05.05.20092627
https://www.medrxiv.org/content/early/2020/05/24/2020.05.05.20092627
https://doi.org/10.1080/01944363.2020.1777891
https://doi.org/10.1146/annurev-virology-012420-022445
https://doi.org/10.1093/aje/kws259


22 N. Afshordi et al.

49. L.C. Marr, J.W. Tang, J. Van Mullekom, S.S. Lakdawala, Journal of The Royal Society
Interface 16(150), 20180298 (2019). https://doi.org/10.1098/rsif.2018.0298. URL https://
royalsocietypublishing.org/doi/abs/10.1098/rsif.2018.0298

50. L. Morawska, in Proceedings of Indoor Air 2005: the 10th International Conference on Indoor
Air Quality and Climate (Springer, 2005), pp. 9–23

51. J. Shaman, V.E. Pitzer, C. Viboud, B.T. Grenfell, M. Lipsitch, PLoS Biology 8(2), e1000316
(2010)

52. J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn, 101(48), 16915 (2004). https://doi.org/10.
1073/pnas.0407293101

53. J. Tamerius, M.I. Nelson, S.Z. Zhou, C. Viboud, M.A. Miller, W.J. Alonso, Environmental
health perspectives 119(4), 439 (2011)

54. D.J. Earn, D. He, M.B. Loeb, K. Fonseca, B.E. Lee, J. Dushoff, Annals of internal medicine
156(3), 173 (2012)

55. R.A. Neher, R. Dyrdak, V. Druelle, E.B. Hodcroft, J. Albert, Swiss medical weekly 150(1112)
(2020)

56. R. Xu, H. Rahmandad, M. Gupta, C. DiGennaro, N. Ghaffarzadegan, H. Amini, M.S. Jalali,
medRxiv (2020). https://doi.org/10.1101/2020.05.05.20092627. URL https://www.medrxiv.
org/content/early/2020/05/24/2020.05.05.20092627

57. M. Schell, B.D. Gonzalez, J. Greene, A. Giuliano, Available at SSRN 3579744 (2020).
URL https://doi.org/10.2139/ssrn.3579744

58. Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. 2020 Susceptible supply limits the
role of climate in the early SARS-CoV-2 pandemic. Science 369, 315–319.

59. E.S. Rosenberg, J.M. Tesoriero, E.M. Rosenthal, R. Chung, M.A. Barranco, L.M. Styer, M.M.
Parker, S.Y.J. Leung, J. Morne, D. Greene, D.R. Holtgrave, D. Hoefer, J. Kumar, T. Udo,
B. Hutton, H.A. Zucker, medRxiv (2020). https://doi.org/10.1101/2020.05.25.20113050.
URL https://www.medrxiv.org/content/early/2020/05/29/2020.05.25.20113050

60. F.P. Havers, C. Reed, T.W. Lim, J.M. Montgomery, J.D. Klena, A.J. Hall, A.M. Fry,
D.L. Cannon, C.F. Chiang, A. Gibbons, I. Krapiunaya, M. Morales-Betoulle, K. Roguski,
M. Rasheed, B. Freeman, S. Lester, L. Mills, D.S. Carroll, S.M. Owen, J.A. Johnson, V.A.
Semenova, J. Schiffer, N.P. Thornburg, medRxiv (2020). https://doi.org/10.1101/2020.06.25.
20140384. URL https://www.medrxiv.org/content/early/2020/06/26/2020.06.25.20140384

61. V. Capasso, G. Serio, Mathematical Biosciences 42(1–2), 43 (1978)
62. D. Mollison, in Population Dynamics of Rabies in Wildlife (1985), pp. 223–234
63. R.J. De Boer, Journal of virology 81(6), 2838 (2007)
64. A. Farrell, C. Brooke, K. Koelle, R. Ke, BioRxiv p. 547349 (2019)
65. Q.X. Long, X.J. Tang, Q.L. Shi, Q. Li, H.J. Deng, J. Yuan, J.L. Hu, W. Xu, Y. Zhang, F.J. Lv,

et al., Nature Medicine pp. 1–5 (2020)
66. J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta, B.S. Zingman, A.C. Kalil, E. Hohmann,

H.Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R.W. Finberg, K. Dierberg,
V. Tapson, L. Hsieh, T.F. Patterson, R. Paredes, D.A. Sweeney, W.R. Short, G. Touloumi,
D.C. Lye, N. Ohmagari, M.d. Oh, G.M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M.G.
Kortepeter, R.L. Atmar, C.B. Creech, J. Lundgren, A.G. Babiker, S. Pett, J.D. Neaton, T.H.
Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H.C. Lane, New England
Journal of Medicine 0(0), null (2020). URL https://doi.org/10.1056/NEJMoa2007764

67. J. Grein, N. Ohmagari, D. Shin, G. Diaz, E. Asperges, A. Castagna, T. Feldt, G. Green,
M.L. Green, F.X. Lescure, E. Nicastri, R. Oda, K. Yo, E. Quiros-Roldan, A. Studemeister,
J. Redinski, S. Ahmed, J. Bernett, D. Chelliah, D. Chen, S. Chihara, S.H. Cohen, J. Cun-
ningham, A. D’Arminio Monforte, S. Ismail, H. Kato, G. Lapadula, E. L’Her, T. Maeno,
S. Majumder, M. Massari, M. Mora-Rillo, Y. Mutoh, D. Nguyen, E. Verweij, A. Zoufaly, A.O.
Osinusi, A. DeZure, Y. Zhao, L. Zhong, A. Chokkalingam, E. Elboudwarej, L. Telep, L. Timbs,
I. Henne, S. Sellers, H. Cao, S.K. Tan, L. Winterbourne, P. Desai, R. Mera, A. Gaggar, R.P.
Myers, D.M. Brainard, R. Childs, T. Flanigan, New England Journal of Medicine 382(24),
2327 (2020). URL https://doi.org/10.1056/NEJMoa2007016

https://doi.org/10.1098/rsif.2018.0298
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2018.0298
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2018.0298
https://doi.org/10.1073/pnas.0407293101
https://doi.org/10.1073/pnas.0407293101
https://doi.org/10.1101/2020.05.05.20092627
https://www.medrxiv.org/content/early/2020/05/24/2020.05.05.20092627
https://www.medrxiv.org/content/early/2020/05/24/2020.05.05.20092627
https://doi.org/10.2139/ssrn.3579744
https://doi.org/10.1101/2020.05.25.20113050
https://www.medrxiv.org/content/early/2020/05/29/2020.05.25.20113050
https://doi.org/10.1101/2020.06.25.20140384
https://doi.org/10.1101/2020.06.25.20140384
https://www.medrxiv.org/content/early/2020/06/26/2020.06.25.20140384
https://doi.org/10.1056/NEJMoa2007764
https://doi.org/10.1056/NEJMoa2007016


Diverse Drivers of COVID-19 in the United States 23

68. Y. Wang, D. Zhang, G. Du, R. Du, J. Zhao, Y. Jin, S. Fu, L. Gao, Z. Cheng, Q. Lu, et al., The
Lancet (2020)

69. P. Horby, W.S. Lim, J. Emberson, M. Mafham, J. Bell, L. Linsell, N. Staplin, C. Brightling,
A. Ustianowski, E. Elmahi, B. Prudon, C. Green, T. Felton, D. Chadwick, K. Rege, C. Fegan,
L.C. Chappell, S.N. Faust, T. Jaki, K. Jeffery, A. Montgomery, K. Rowan, E. Juszczak,
J.K. Baillie, R. Haynes, M.J. Landray, medRxiv (2020). https://doi.org/10.1101/2020.06.22.
20137273. URL https://www.medrxiv.org/content/early/2020/06/22/2020.06.22.20137273

https://doi.org/10.1101/2020.06.22.20137273
https://doi.org/10.1101/2020.06.22.20137273
https://www.medrxiv.org/content/early/2020/06/22/2020.06.22.20137273

