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We characterize the avoided crossings in a two-parameter, time-periodic system which has been the basis for
a wide variety of experiments. By studying these avoided crossings in the near-integrable regime, we are able
to determine scaling laws for the dependence of their characteristic features on the nonintegrability parameter.
As an application of these results, the influence of avoided crossings on dynamical tunneling is described and
applied to the recent realization of multiple-state tunneling in an experimental system.
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I. INTRODUCTION

Avoided crossings of eigenvalue curves are generic fea-
tures of quantum systems with nonintegrable classical coun-
terparts �1�. Their appearance allows for a wide variety of
interesting, purely quantum-mechanical phenomena, includ-
ing chaos-assisted tunneling �2� and the adiabatic exchange
of eigenstate character �3�, and generally provides the
mechanism by which underlying classical chaos affects the
dynamics of a quantum system �4�. Their existence is also
responsible for perhaps the most well-known result in the
field of quantum chaos, the non-Poisson statistical distribu-
tion of level spacings in “chaotic” quantum systems �5�.

In systems with two parameters, an avoided crossing
along any curve in parameter space can be associated with a
“diabolical point” at which two eigenvalue surfaces become
degenerate �6�. The conical shape of the two eigenvalue sur-
faces in the vicinity of such a diabolical point ensures the
characteristic hyperbolic behavior of two eigenvalues taken
along any curve in parameter space passing near, but not
through, the diabolical point. In the particular case of a near-
integrable system, one parameter may be fixed to be zero,
leaving the system integrable for all values of the other pa-
rameter. Eigencurves will freely cross under variation of the
latter parameter, thus creating diabolical points of the asso-
ciated eigenvalue surfaces when viewed in the full two-
parameter space. As we show here, this type of diabolical
point is important because perturbation theory can be applied
to characterize the conical shape and therefore characterize
the avoided crossings of the near-integrable system.

In this paper we study the particular two-parameter, near-
integrable system of a harmonically driven pendulum:

H��,�� = p2 + � cos � + ��cos�� + �t� + cos�� − �t�� .

�1�

This “one-and-a-half ” degree-of-freedom system is one of
the simplest types of classical systems to exhibit chaos. It is
of significant experimental interest in quantum mechanics
since it has been implemented in a number of studies �7–12�
through the use of cold atom optics, particularly in investi-
gations of multiple-state dynamical tunneling �12�. Theoreti-
cally, it provides a convenient framework for studying the
avoided crossings of near-integrable systems since for �
→0 the system is the integrable pendulum Hamiltonian.

In the following, we study the properties of avoided cross-
ings for the driven pendulum with the use of Floquet theory.
An avoided crossing of two Floquet eigenvalue curves �for
��0� can be associated with a level crossing of the inte-
grable pendulum ��=0� system and is characterized by the
dependence of its closest approach on the nonintegrability
parameter �. For small values of �, we find that the spacing
exhibits a power law dependence with an integer power. A
modified degenerate perturbation theory is then applied to
verify this dependence and associate it with the direct or
indirect coupling of the associated integrable eigenstates. We
then use the perturbation results to elucidate a multiple-state
dynamical tunneling process in the vicinity of an avoided
crossing and apply the results to the particular achievement
of this tunneling in an atom-optics experiment. We finally
show the association of this avoided crossing to a nearby
diabolical point.

In Sec. II we present the model Hamiltonian under con-
sideration in the paper, including a description of the sys-
tem’s classical dynamics. Section III presents the quantum
dynamics of the model system, with a brief review of Flo-
quet analysis. Avoided crossings of the model system are
investigated in detail in Sec. IV, first numerically, then with
the perturbation theory results presented in the Appendix. We
review the implications of avoided crossings on dynamical
tunneling in Sec. V and demonstrate the origin of those
avoided crossings in a particular experimental system. Sec-
tion VI contains some concluding remarks.

II. MODEL HAMILTONIAN

The Hamiltonian we consider consists of a particle mov-
ing in the presence of a harmonically modulated, spatially
periodic potential. It can be written in the form

H��p�,x,t�� =
p�2

2m
+ V1 cos�kx� + V2 cos�kx�cos���t�� ,

�2�

where p� is the momentum and x the position of a particle of
mass m, t� is time, V1 is the amplitude of the spatially peri-
odic potential, V2 is the amplitude of the modulation poten-
tial, and �� is the frequency of the modulation potential. The
experimental implementation of quantum systems with this
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type of Hamiltonian was first proposed by Graham, Schlaut-
mann, and Zoller in 1992 �7� and then achieved by Raizen
and co-workers �8,9,12� and Hensinger et al. �10�.

It is useful to change to dimensionless units. We
define p= p� /�k, �=kx, t= t�E0 /�, �=��� /E0, �=V1 /E0,
�=V2 /2E0, and H=H� /E0, where E0��2k2 /2m. Then, the
Hamiltonian in Eq. �2� takes the form

H�p,�,t� = H0�p,�� + ��cos�� − �t� + cos�� + �t�� , �3�

where

H0�p,�� = p2 + � cos��� �4�

is the Hamiltonian of a pendulum and we have written the
modulation term explicitly as two traveling waves. Note that
momentum is measured in units of �k.

The classical phase space of a time-periodic one-and-a-
half degree-of-freedom system such as H�p ,� , t� can be vi-
sualized by a strobe plot of the trajectories at times
t=�2� /� ���Z�. A strobe plot of phase-space trajectories
for the system governed by Hamiltonian H�p ,� , t� is shown
in Fig. 1�a� with parameters �=7.8 and �=0. �For the case of
�=0, the system is independent of time and could be visual-
ized with an ordinary parametric plot of phase space; how-
ever, we plot the strobed phase space for convenience of
comparison to the perturbed system.� Because this system is
integrable, all orbits lie on tori �in either the regions of the
pendulum’s libration or rotation� and the phase space is ab-
sent of chaos. Figure 1�b� shows a strobe plot of the phase
space with parameters �=7.8, �=1.0, and �=24. The trav-
eling waves in the modulation term have phase velocities
v= ±� and are seen as primary resonance structures at

p= ±� /2 where �̇=v. Although much of the orbit structure
of the integrable system is preserved, the tori with rational
winding numbers have been destroyed, giving rise to a self-

similar set of daughter resonance structures �see, for ex-
ample, the two-island chains at p= ±� /4�. Regions of chaos
surround these resonances, most visibly near the separatrix
of the pendulum resonance.

III. QUANTUM DYNAMICS

The dimensionless Schrödinger equation for the system in

Eq. �3� is i�� /�t����t��= Ĥ�t����t��, where

Ĥ�t� = p̂2 + � cos �̂ + 2� cos��̂�cos��t� . �5�

We will consider the configuration space �� �0,2�� to be
periodic such that ��+2� ���t��= �� ���t�� and the momen-
tum operator has integer eigenvalues p̂�p�=n�p� �n�Z�. In
the experimental systems, this is approximately achieved
naturally because momentum transfer occurs in discrete units
of �k �9–11�.

When �=0, the Hamiltonian reduces to that of the quan-

tum pendulum, Ĥ0���= p̂2+� cos �̂. The eigenstates of Ĥ0

are Mathieu functions �13� which we will henceforth

denote as �n���� so that Ĥ0����n����=En����n���� where
n=0, ±1, ±2, . . . . �We will suppress the � dependence of
these eigenstates until their specification is necessary.� States
�n� with positive integer labels are those with even parity;
states with negative integer labels are those with odd parity.
Note that as �→0, En→n2. If ��0, but �n� is large �i.e., the
corresponding classical pendulum energy is much larger than
that of the separatrix�, we will again have En	n2.

A. Floquet theory

The Hamiltonian in Eq. �5� is time periodic, and therefore
Floquet’s theorem guarantees that solutions of the
Schrödinger equation can be written in the form

FIG. 1. Strobe plots of the sys-
tem in Eq. �3� with �=24 and pa-
rameters �a� �=7.8 and �=0 and
�b� �=7.8 and �=1.0.
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��	�t�� = e−i
	t��	�t�� with ��	�t + T�� = ��	�t�� , �6�

where we have defined T=2� /� and where ��	�t�� and 
	

are called the Floquet eigenstate and eigenvalue, respec-
tively. Substituting this solution into the Schrödinger equa-
tion yields the eigenvalue equation

ĤF�t���	�t�� � 
Ĥ�t� − i
�

�t
���	�t�� = 
	��	�t�� , �7�

where ĤF�t� is called the Floquet Hamiltonian.
The Floquet Hamiltonian is a Hermitian operator in a

composite Hilbert space � � T �14,15�, where � is the space
of all square-integrable functions f��� on the configuration
space and T is the space of all time-periodic functions a�t�
with period T and finite �−T/2

T/2 �a�t��2dt. The inner product of
two vectors ��a� and ��b� in this space is then defined by

���a��b�� �
1

T


−T/2

T/2

��a�t��t��b�dt =
1

T


−T/2

T/2

��a�t���b�t��dt ,

�8�

where ��a�t� ��b�t��=�0
2���a�t� ����� ��b�t��d� is the usual

inner product in �. We select a complete orthonormal basis
in this composite space:

�t�n,q� = �n�eiq�t �n,q � Z� , �9�

where ��n�� are the eigenstates of the pendulum Hamiltonian

Ĥ0. These basis vectors satisfy ��n ,q �n� ,q���=n,n�q,q�.

The Floquet Hamiltonian ĤF is Hermitian, so the Floquet
eigenvalues 
	 are real and two Floquet eigenstates ��	� and
���� belonging to different eigenvalues are orthogonal. Ad-
ditionally, the Floquet Hamiltonian commutes with the parity
operator defined by its action on the momentum eigenket

�̂�p�= �−p�. Therefore the two operators can be diagonalized

simultaneously and all Floquet eigenstates have definite par-

ity: �̂��	�= ±1��	�. Floquet states with parity eigenvalue +1
will be called even, those with eigenvalue −1 odd.

Given one Floquet eigenstate ��	�t�� with Floquet eigen-
value 
	, there will be another Floquet eigenstate ��	��t��
such that ��	��t���eiq�t��	�t�� �q�Z�, with eigenvalue 
	�
�
	+q�. These two Floquet eigenstates, however, repre-
sent the same physical state—i.e.,

e−i
	� t��	��t�� = e−i
	t��	�t�� . �10�

Therefore we may limit consideration to the fundamental
zone −� /2�
�� /2 in which each physical eigenstate of
the time-dependent Schrödinger equation is represented by
the corresponding Floquet eigenstate with eigenvalue within
that range.

Consider the unperturbed system ĤF
0 � Ĥ0− i� /�t which

we will call the Floquet pendulum. The eigenstates of this
system are precisely the basis states �n ,q� with eigenvalues

nq=En+q�. Figure 2 shows the lowest nine energies of the
even-parity eigenstates of the quantum pendulum and the
corresponding Floquet eigenvalues in the fundamental zone
−� /2�
�� /2.

B. Another method for determining Floquet states

An arbitrary dynamical state of the system can be ex-
panded, with the use of Eq. �6�, in the basis of Floquet eigen-
states,

���t�� = �
	

�A	e−i
	t��	�t�� , �11�

where the prime indicates that the sum is restricted to those
Floquet states with 
	 in the fundamental zone. The expan-
sion coefficients are independent of time and can be written

FIG. 2. �a� Energy curves of
the nine lowest-energy, even-
parity eigenstates of the quantum

pendulum, Ĥ0= p̂2+� cos �̂. �b�
The nine corresponding “Floquet
pendulum” eigenvalues in the fun-
damental zone −� /2�
� +� /2
with �=24. The labels �n ,q� on
each Floquet eigenvalue segment
identify the corresponding Floquet
eigenstate �n ,q�. The dashed lines
in �a� indicate the Floquet eigen-
value zone boundaries.

AVOIDED CROSSINGS IN DRIVEN SYSTEMS PHYSICAL REVIEW A 72, 043408 �2005�

043408-3



A	= ��	�0� ���0��. Using the time periodicity of the Floquet
eigenstates, we can then write

���T�� = �
	

�e−i
	T��	�0����	�0����0�� � Û�T����0�� ,

�12�

showing that the time-evolution operator over a single period
T,

Û�T� = �
	

�e−i
	T��	�0����	�0�� , �13�

is diagonalized by the Floquet eigenstates at time t=0. We
can therefore determine these time-strobed Floquet states by

constructing the matrix Umm���m � Û�T� �m�� in some conve-
nient basis ��m�� in �, truncating this matrix at some appro-
priate level m=M where it becomes approximately diagonal
�i.e., UMM �UMm for m�M�, and then performing a numeri-
cal diagonalization to obtain the ��	�0�� and 
	 �mod ��.
The mth column of U is obtained by evolving the basis vec-
tor �m� over one period T via numerical integration of the
Schrödinger equation.

In subsequent sections, we will compare the phase-space
distributions of the time-strobed Floquet eigenstates ��	�0��
to the classical system. We can do this by introducing the
Husimi distribution ���0 , p0� �16,17� of a quantum state ���
on the classical phase space ��0 , p0�:

���0,p0� �
1

2�
���0,p0����2, �14�

where the coherent state ��0 , p0� is defined as an eigenstate of

the annihilation operator â= �1/�2���̂ /�+ i�p̂� with position
and momentum expectation values of �0 and p0, respectively.
The free parameter � is set according to the physical system
considered �see below�. The representation of such a coher-
ent state in the discrete momentum basis ��p�� is given by

�p��0,p0� = A exp�−
�2

2
�p − p0�2 − i�0�p − p0�� , �15�

where A is a normalization factor guaranteeing
��0 , p0 ��0 , p0�=1. The action of the annihilation operator on
the coherent state can be used to show that �p�
���0 , p0�p̂��0 , p0�= p0, ���=�0, ��=� /�2, and �p= ���2�−1.
Thus, the coherent state is a minimum-uncertainty wave
packet, where the free parameter determines the ratio of its
uncertainty in position and momentum—i.e., �2=�� /�p.
Reference �17� presents an in-depth discussion on the selec-
tion of the parameter �. In all Husimi plots shown in subse-
quent sections, we set �=1.18�−1/4, a choice which provides
the best association between the quantum pendulum eigen-
functions and the corresponding classical orbits. As we will
see, the Husimi distributions of the Floquet states lie directly
on the orbit structures of the classical phase space.

IV. AVOIDED CROSSINGS

The Floquet pendulum is integrable, and its eigenvalues

n,q���, shown in Fig. 2�b�, cross under the variation of �.

For any nonzero �, however, the system represented by the
Hamiltonian in Eq. �5� is nonintegrable and the approach of
any two �same parity� Floquet eigenvalues under variation of
� results in an avoided crossing. This well-known result, the
no-crossing theorem, was first proved by von Neumann and
Wigner for eigenvalues of generic Hermitian matrices �1�.
They also showed that adiabatic passage of two quantum
states through an avoided crossing leads to an exchange of
character. �In a two-parameter system, this exchange can be
related to the partial circuit of a diabolical point �6�, while in
single-parameter systems it can be related to exceptional
points in the complex parameter plane �18�.� Avoided cross-
ings of Floquet eigenvalues in the fundamental zone, which
generally involve states localized in well-separated regions
of the phase space, will therefore allow a wide variety of
interesting quantum dynamical phenonomena, including
adiabatic transitions and tunneling.

In this section, we will consider the near-integrable re-
gime �0�����, in which a clear association can be made
between the Floquet eigenstates of the perturbed system
���0� and those of the Floquet pendulum ��=0�. In this
regime, the Floquet eigenvalues will follow nearly the same
dependence on � as the unperturbed eigenvalues seen in Fig.
2�b�, except in the vicinity of an avoided crossing. For �
values sufficiently far from these avoided crossings, we can
make a unique, though necessarily local, association
��	�↔ �n	 ,q	� of the Floquet eigenstate ��	� to the Floquet
pendulum state with maximum overlap ��n ,q ��	��. As
�→0, this association will become an equality. We will see
that the fundamental characteristics of an avoided crossing
between states ��	� and ���� will be determined by the dif-
ference

�q	� � �q	 − q�� . �16�

In the subsections below, we first present a numerical analy-
sis of some representative avoided crossings in the system
with �=24 and then use perturbation theory to show that the
results are quite general.

A. Numerical results

Three avoided crossings of Floquet eigenvalues in the
fundamental zone with �=5�10−2 are shown in Figs. 3, 4,
and 5 with Husimi plots of the corresponding Floquet eigen-
states overplotted on the figures. The dotted lines shown are
the eigenvalues of the unperturbed Floquet pendulum. These
plots were created by numerically calculating the time-
strobed Floquet states at a sequence of � values. With each
step forward in �, the new states were associated with those
of the previous step by calculating the maximum overlap and
verifying continuity of the eigenvalues. In the case that two
Floquet eigenvalues crossed between � steps, the size of the
step was reduced and the process repeated until no crossing
occurred.

Each of these three avoided crossings involves one Flo-
quet eigenstate localized within the pendulum resonance at
p=0 and another localized outside of the pendulum reso-
nance. The avoided crossing in Fig. 3 involves the states
�n	 ,q	�= �1,0� and �n� ,q��= �5,−1�, Fig. 4 involves the
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states �n	 ,q	�= �1,0� and �n� ,q��= �7,−2�, and Fig. 5 in-
volves states �n	 ,q	�= �0,0� and �n� ,q��= �8,−3�. The asso-
ciated crossings can be found in Fig. 2�b�. These particular
avoided crossings were chosen as representative examples
with �q	�=1, 2, and 3, respectively.

Some general characteristics of these avoided crossings
deserve attention. First, the “exchange of character” between
the two states is evident in the evolution of the Husimi dis-
tributions with �. The associations ��	�↔ �n	 ,q	� and
����↔ �n� ,q�� well before the avoided crossing become
��	�↔ �n� ,q�� and ����↔ �n	 ,q	� well after. For � values at
the avoided crossing, the two Floquet states are superposi-
tions of the asymptotic states. Second, there is quite a dis-
parity of scale among the three avoided crossings. In particu-
lar, the minimum eigenvalue spacing �	�, defined by

�	� � min��
	 − 
��� , �17�

is relatively large for the first and relatively small for the
third. Finally, the position �ac of the minimum spacing

�which we will henceforth call the “position of the avoided
crossing”� is not necessarily equal to the position �0 of the
unperturbed crossing. Indeed, it seems that for �q	��1, the
avoided crossing is significantly offset in both � and 
.

To make these last two observations more quantitative, we
have computed the dependence of �	� and ��ac���0−�ac�
on the parameter �. The results for the three example
avoided crossings are shown in Figs. 6 and 7. We see that,
for small values of �, the dependences are all well approxi-
mated by power laws with integer exponents. The minimum
spacing of the avoided crossings is given by

�	� = A��q	�, �18�

where the coefficients are A	�5.44�10−3, 1.02�10−3, and
7.35�10−7� for avoided crossings I, II, and III, respectively.
The � offset of the avoided crossings is given by

FIG. 3. A �q	�=1 avoided crossing of

the system ĤF with parameters �=24 and
�=5�10−2. The Husimi distributions of the cor-
responding Floquet eigenstates are shown at
�= �7.455,7.460,7.465� (the horizontal axis is
�0� �0,2��, vertical is p0� �−15,15�). The dot-
ted lines are the eigencurves of the unperturbed
Floquet pendulum.

FIG. 4. A �q	�=2 avoided crossing of

the system ĤF with the same � and �
values as in Fig. 3. The Husimi distributions
shown are the two Floquet eigenstates at
�= �7.82146,7.82150,7.82154� �axes are the
same as Fig. 3�. The dotted lines are the eigen-
curves of the unperturbed Floquet pendulum.
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��ac = B�2, �19�

where B	�5.2�10−3 and −8.3�10−3� for avoided cross-
ings II and III ���ac=0 for avoided crossing I�.

B. Perturbation theory results

We now use perturbation theory to determine the behavior
of the Floquet eigenvalues and eigenstates in the neighbor-
hood of avoided crossings. We will obtain approximate solu-
tions ���	� ,
	� to the Floquet eigenvalue equation

ĤF��,����	��,��� = �ĤF
0��� + �V̂���	��,���

= 
	��,����	��,��� , �20�

where ĤF
0��� is the Floquet pendulum Hamiltonian, V̂

=2 cos �̂ cos��t�, and � is considered a small expansion pa-
rameter. Our unperturbed system is the twofold-degenerate

system ĤF
0��0�, where �0 is the parameter value at which

the eigenvalue curves of two Floquet pendulum states
�	0������n	 ,q	� and ��0������n� ,q�� cross. We have seen
in Sec. IV A that, for ��0, the closest approach of the ei-
genvalues 
	 and 
� involved in an avoided crossing may
not occur at �=�0, so an offset must be allowed for. We
therefore introduce into Eq. �20� an arbitrary function
����=�0+����� and expand ����� as a power series in �.
The particular value �ac��� at which the eigenvalues make
their closest approach can then be determined by solving the
extremal condition for �
	���
	�� ,��−
��� ,���,

� ��
	�

��
�

�=�ac

= 0, �21�

at each order to fix the expansion coefficients of �����. In
this manner, we find the perturbed eigenstates and eigenval-
ues at �=�ac.

The details of the perturbation analysis are given in the
Appendix. The results may be summarized as follows. The
breaking of the degeneracy between states �	0� and ��0� oc-

FIG. 5. A �q	�=3 avoided crossing of

the system ĤF with the same � and �
values as in Fig. 3. The Husimi distributions
shown are the two Floquet eigenstates at
�= �9.973221751,9.9732217534,9.973221755�
�axes are the same as Fig. 3�. The crossing of the
corresponding eigencurves of the unperturbed
Floquet pendulum falls outside of the plotted re-
gion at �0	9.973242.

FIG. 6. The minimum spacing �	� as a
function of � of the three avoided crossings
shown in Figs. 3, 4, and 5. The functions
�	�=5.44�10−3�, �	�=1.02�10−3�2, and
�	�=7.35�10−7�3 are overplotted.
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curs at the lowest order �N for which the coupling between
these states, v	�

�N� �defined below�, is nonzero. At this order,
the two Floquet eigenvalues in the region of the avoided
crossing are determined by the eigenproblem of a 2�2 ma-
trix in the basis of the unperturbed states �	0��0�� and
��0��0��:


���N�E	 + v		
�N� v	�

�N�

v�	
�N� ���N�E� + v��

�N� �
C	
±

C�
± � = 
±

�N�
C	
±

C�
± � .

�22�

The coefficients C	
± and C�

± determine the zeroth-order near-
degenerate eigenstates in the region of the avoided crossing;
���N� and 
±

�N� are the coefficients of �N in the expansions of
the arbitrary � offset and the near-degenerate Floquet eigen-
values 
±, respectively; Ei= �ni��0� �cos � �ni��0�� are the
slopes of the unperturbed eigencurves; and vij

�N� depends on
the matrix elements of the perturbation operator:

Vlm � ��nl,ql�V̂�nm,qm��

= �nl��0��cos �̂�nm��0���ql,qm+1 + ql,qm−1� . �23�

For the first three orders in �, these couplings are

vij
�1� = Vij , �24�

vij
�2� = �

���	,��

Vi�V�j


�0� − 
�
�0�

, �25�

vij
�3� = �

���	,��
� �

���	,��

Vi�V��V�j

�
�0� − 
�
�0���
�0� − 
�

�0��

+ ij
Vi�V�i�V		�E	 − E�� + V���E� − E���

�
�0� − 
�
�0��2 � ,

�26�

where i , j� �	 ,��, the zeroth-order eigenvalues 
l
�0� are

taken at �0, and we write 
�0�=
±
�0�. Using Eqs. �22� and

�21� we find that the Nth-order corrections to the eigenval-
ues, at the position of the avoided crossing, are given by


±
�N���ac� =

1

2
�v		

�N� + v��
�N� + ��ac

�N��E	 + E���

±
1

2
��v		

�N� − v��
�N� + ��ac

�N��E	 − E���2 + 4�v	�
�N��2

=
v��

�N� − v		
�N�

E	 − E�

± �v	�
�N�� . �27�

At orders 0�M �N, the two eigenvalues 
± are degenerate
at an offset from ��0 ,
�0�� specified by the coefficients

���M� =
v��

�M� − v		
�M�

E	 − E�

�28�

and


�M� =
v��

�M�E	 − v		
�M�E�

E	 − E�

. �29�

The origin of the numerical results presented in Sec. IV A
is now clear. The matrix elements of the perturbation Vij are
nonzero only when �qij =1. Therefore, for an avoided cross-
ing between states ��	� and ����, we must have N=�q	�.
Using Eq. �27� and the fact that 
�M�N� is the same for ��	�
and ����, we find that, to lowest order in �, the minimum
spacing is given by

�	� = 2�v	�
��q	�����q	�. �30�

Its interesting to note that the � offset of an avoided crossing
in this system is dependent on �2, because v		

�2� and v��
�2� are

nonzero, even when �q	��2.
Table I shows a quantitative comparison of the numerical

results presented in the previous section �in terms of the co-
efficients A and B of Eqs. �18� and �19�� to those obtained by
the perturbation analysis. For all three examples of avoided
crossings, we see excellent agreement. We have also verified

FIG. 7. The � offset ��ac as a function of
� for the avoided crossings shown in Figs. 4 and
5. The functions ���ac�=5.2�10−3�2 and
���ac�=8.3�10−3�2 are overplotted.
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the predictions of perturbation theory for a number of other
avoided crossings in this system �as well as those in systems
with different values of ��, finding similar agreement.

A number of other characteristics of the avoided crossings
can be determined from our perturbation analysis. Substitut-
ing 
±

�N���ac� and ��ac
�N� into Eq. �22�, we find that at the

position of the avoided crossing, the two perturbed Floquet
eigenstates �to lowest order in �� become an equal superpo-
sition of the two associated Floquet pendulum states—i.e.,

�C	
±���ac�� = �C�

±���ac�� . �31�

We may also determine the relative magnitudes of these co-
efficients at some � value near the avoided crossing. If, in-
stead of calculating ���N� by the extremal condition, we
determine the � offset where the eigenvalue separation is a
times the minimum value, we find

����N���
	�=a�	�
=

v		
�N� − v��

�N�

E		 − E��

±
2�a2 − 1�v	�

�N��
�E		 − E���

. �32�

A simple calculation then shows that the coefficients obey

� �C	
±�

�C�
±���
	�=a�	�

=
1

�a ± �a2 − 1�
, �33�

where we have assumed that �E	−E���0. As a→ �1,��,
we see that, for example, �C	

+ /C�
+�→ �1,0�, as expected. This

verifies the qualitative behavior seen in the Husimi distribu-
tions plotted in Figs. 3–5.

V. IMPLICATIONS FOR DYNAMICAL TUNNELING

Under the evolution of the system given in Eq. �5�, an
initial quantum state ��+�0�� which is localized in classical
phase space �in the sense of its Husimi distribution� in a
region of positive momentum at p	 p0 may undergo time-
periodic dynamical tunneling �19�, across the central reso-
nance �and all intervening KAM tori� to the opposite mo-
mentum region at p	−p0. The mechanism for this behavior
is the existence of a near-degenerate and opposite-parity pair
of Floquet eigenstates which each have localization near p0
and −p0. If the Floquet eigenvalues of these two states are far
from any avoided crossings, the tunneling dynamics is well
described by a two-state process exactly analogous to the
tunneling through a potential barrier in the time-independent
double-well system �20�. In the vicinity of an avoided cross-
ing, however, the dynamics is influenced by a third state with
partial localization in the regions of ±p0 and the time evolu-
tion takes on a more complicated beating behavior. In this

section we analyze this tunneling behavior in the perturba-
tive regime �� small� and then apply the results to tunneling
oscillations observed in a recent experiment. Although the
experimental system cannot be considered to be in a pertur-
bative regime, we identify the diabolical point associated
with the relevant avoided crossing and show that an approxi-
mate result can be obtained numerically which characterizes
this avoided crossing quite well.

A. Tunneling behavior in the perturbative limit

To analyze the tunneling induced by the Hamiltonian in
Eq. �5�, we consider again the one-period time-evolution op-

erator Û�T� defined in Sec. III B and its eigenvectors, the
time-strobed Floquet eigenstates ��	�T��= ��	�0�� �we will
drop the explicit reference to “time-strobed” in this section�.
As a particular example, consider the avoided crossing
shown in Fig. 8 �the same as that shown in Fig. 3, but with
the odd-parity state now included, shown as a dotted line�.
At �=7.456, a value far from the avoided crossing, the
opposite-parity pair of states ��	� and ���� are near
degenerate ��
�−
	�	4.5�10−6� and have localization at
p	 ±5. The phase-space localization of state ���� is
completely within the central resonance and does not
overlap significantly with this pair. We can construct an ini-
tial state, localized at either p	5 or −5, as an equal super-
position of the two near-degenerate Floquet states–i.e.,
��±�0��= �1/�2����	�± �����. When either is acted on by

Û�nT�, the evolution is periodic, oscillating between
p	 ±5 with a tunneling frequency �tun= �
	−
��. The cor-
responding number of modulation periods for complete os-
cillation is then ntun=� /�tun	5.3�106.

In the region of the avoided crossing, the odd-parity state
���� will be approximately unchanged, while states ��	� and
���� become, to lowest order in �, superpositions of their
unperturbed, Floquet pendulum, counterparts. Therefore, in
the neighborhood of the avoided crossing, both ��	� and ����
will have significant support in the same region of phase
space as ����. At the exact position �ac of the avoided cross-
ing, where ��	� and ���� are an equal superposition of the
unperturbed states, the initial conditions localized at either
p	5 or −5 can then be written

��±�0�� =
1

2
��	� +

1

2
���� ±

1
�2

���� , �34�

where all three eigenstates are evaluated at �=�ac. Applying
the time-evolution matrix to ��+�0�� we find, after n applica-
tions,

TABLE I. Comparison of numerical results to those of perturbation theory. The quantities Anum and Bnum

are obtained from numerical simulation, and Apt and Bpt are obtained from perturbation theory.

�ac �n	 ,q	� �n� ,q�� �q	� Anum Apt Bnum Bpt

7.46 �1, 0� �5,−1� 1 5.44�10−3 5.5�10−3

7.83 �1, 0� �7,−2� 2 1.02�10−3 1.0�10−3 5.2�10−3 5.2�10−3

9.97 �0, 0� �8,−3� 3 7.35�10−7 7.3�10−7 −8.3�10−3 −8.3�10−3
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��+�nT�� = Û�nT���+�0��

= e−inT
�
 e−inT�
	�

2
��	� +

1

2
���� +

e−inT�
��

�2
����� ,

�35�

where �
ij �
i−
 j, here. If we make the assumption that
��
���= ��
	���� at �=�ac, we see that ��+�� /���
���−�0��. This three-state process therefore generates a new,
larger, tunneling frequency �tun=�. The time evolution of
��+�0�� at �	�ac is shown in Fig. 9�a�. Notice that the the-
oretical tunneling period ntun=� /�	1.8�105 is modulated
by a beat period resulting from the small difference
�
��−�
�	. As the position of the avoided crossing is cho-
sen more precisely and 
�→ �
	+
�� /2, the period of
beating goes to infinity.

Between these two extremes of regular two-state and
three-state tunneling, at other values of the parameter �
along the avoided crossing, the tunneling takes on a beating
behavior due to the two eigenvalue differences between the
odd-parity state and each even-parity state. An example of

this �the evolution of ��+�0�� under Û�T� at �=7.4605� is
shown in Fig. 9�b�. For this and all values of the parameter �,
the evolution of the momentum expectation of ��+�0�� is well
fit by the simple function

�p��nT� = A	 cos��
�	nT� + A� cos��
��nT� , �36�

where A	 and A� can be related to the overlap of ��+�0�� with
��	� and ����, respectively.

The variation of two-state tunneling frequencies in the
vicinity of avoided crossings has been remarked on by many
authors �2,21–26� in many different systems and is often
attributed to the influence of underlying classical chaos.
Classical chaos in a nonperturbative regime will certainly
introduce additional complications to the quantum dynamical
tunneling process which we have not investigated here �no-
tably the interaction between tunneling through dynamical
barriers and free evolution in a region dominated by chaos

�27��, and avoided crossings will become larger, more nu-
merous, and may overlap, leading to the interaction of more
than three relevant states. However, as we have seen in this
section, the basic mechanism for “tunneling enhancement”
does not necessarily require global chaos but only the
nonintegrability which leads to avoided crossings. Indeed,
for the nonintegrability parameter used in this section
��=5�10−2�, the classical phase space has only small re-
gions of chaos.

B. Analysis of a tunneling experiment

As an application of the tunneling results of the previous
section, we consider the experiment of Steck, Oskay, and
Raizen �12�. The Hamiltonian implemented in this atom-
optics experiment depends on a single parameter 	 and can
be considered a special case of that in Eq. �5� by setting
�		 /2.17 �up to a sign difference which can be removed by
a � translation of the angle variable�, �=� /2, and �	6.04.
It should be noted that this system is not connected to the
Floquet pendulum system since � is not an independent pa-
rameter. Instead, in the limit � ,�→0, the free particle
Hamiltonian is obtained.

The primary result of the experiments detailed in �12� is
the observation of dynamical tunneling between two reso-
nance islands in the classical phase space �located at
p	 ±3�, which exhibits oscillation frequencies dependent on
the parameter value considered and independent of the
modulation frequency. In particular, for a range of parameter
values, the observed tunneling oscillations were dominated
by two primary frequencies. The Floquet eigenvalue curves
for the experimental system are shown in Fig. 10, and the
experimentally observed tunneling frequencies are shown in
Fig. 11�b�, overplotted on the differences of eigenvalues be-
tween three particular Floquet eigenstates. These three states
exhibit significant localization in the region of the classical
resonance islands at some values of the parameter � �11�.
The experimental frequencies are well predicted by only two
of these differences: namely, �
	� and �
��.

FIG. 8. The avoided crossing from Fig. 3�a�,
now with the relevant odd-parity state included
�dotted line�. The vertical lines are the � values at
which the time evolution in Fig. 9 was obtained.
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The oscillations seen in the parameter region
�� �3,4.75� are due to the existence of an avoided crossing
between the eigenvalues of the even-parity states labeled
��	� and ����. As can be seen in the overplotted Husimi
distributions, these two even-parity states originate at small �
values from two disconnected regions of the phase space, the
first residing at p	0 and the other at the positions of the
classical resonance islands where the odd-parity state ����
also has its primary support. In passing through this avoided
crossing, the odd-parity state retains its original character,
while the two even-parity states become mutual superposi-
tions of their small-� character. It is clear that this avoided
crossing is not of the ideal form considered in the perturba-
tive regime. The superposing effects of this avoided crossing

extend well beyond the minimum eigenvalue separation at
�	3.0 �see Fig. 11�a��, due to the natural eigenvalue curva-
ture of a state with the low-� character of ���� �a simpler
example of this is state �1, 0� in Fig. 2�b��. Just past this
minimum spacing, the eigenvalue of state ��	� curves back
downward toward that of ����, immediately beginning a sec-
ond avoided crossing and thus preserving the composite na-
ture of these two even-parity states through �	6. As a fur-
ther complication, in the parameter region �� �5,7�, states
��	� and ���� are joined by two other even-parity states in a
complex and overlapping set of avoided crossings.

Despite these complications, we can identify the dynami-
cal tunneling in the parameter region �� �2.5,4.75� to be a
three-state process involving those states shown in Fig.
11�a�. As predicted by the results of the previous section, the
observed tunneling frequencies involve only differences in
the Floquet eigenvalue between the odd-parity state and the
two even-parity states. A direct comparison of the oscilla-
tions from �12� with the numerically calculated evolution of

an initially localized state ��+�0�� under Û�T� is shown in
Fig. 12 for the values �=3.68 and 4.50. Neglecting dissipa-
tion and a momentum offset of the experimental values �due
to the fact that not all atoms contributing to the average are
participating in the dynamics�, there is good agreement in the
second case. In the first case and for all parameter values
between �=3 and 4, the experiment seems to pick up only
one of the underlying frequencies ��
��, while the numerics
predict nearly equal contributions from �
�� and �
	��. It
was noted in Ref. �28� that the detection of fewer than the
predicted number of frequency contributions to the tunneling
behavior was also found in another experimental system
�10�.

Finally, we would like to consider the origin of the
avoided crossing involved in the dynamical tunneling ob-
served in �12�. Figure 13 shows the avoided crossing of Fig.
11�a� lying on the eigenvalue surfaces 
	 and 
� in �-�
space. One can see that these two surfaces meet at a diaboli-
cal point on the �=0 axis, where �	2.8. Numerical analysis
shows that, in the neighborhood of the diabolical point, the
minimum spacing between the two eigenvalue surfaces is
linearly dependent on �, with

�	� = 9.22 � 10−2� . �37�

This result is in good agreement with a perturbation analysis
similar to that of the Appendix, but with � as the small ex-
pansion parameter. The predicted minimum spacing from
such an analysis yields

�	�,pt = 2�V	�� �� 	 9.2 � 10−2� , �38�

where the matrix element must be numerically calculated as
the coupling of the two degenerate Floquet eigenstates of the

��=0.0,�=2.8� system through V̂�=cos �̂, the coefficient of
�. Although the avoided crossing in the experiment �Fig.
11�a�� appears at a parameter value outside the range of va-
lidity of perturbation theory, the observed minimum spacing
between �
	 and �
� agrees with Eq. �38� to within a
factor of 2.

FIG. 9. The evolution of state ��+�0�� �created by the superpo-
sition of the near-degenerate states at �=7.456� under the action of

Û�T� at �	�ac �a� and �=7.4605 �b�. The discrete time n is mea-
sured in modulations periods.
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VI. CONCLUSIONS

We have shown that the minimum spacing of avoided
crossings in a near-integrable time-periodic system, and
therefore the minimally separated “ridges” of the double-
cone structures surrounding a diabolical point, exhibits a
power law dependence on the nonintegrability parameter,
with integer power. A modified degenerate perturbation
theory has allowed us to relate the coefficient of this depen-
dence to the direct or indirect coupling of the two related
unperturbed Floquet states through the perturbation operator
and the integer power to the number of “photon energies” �
connecting their related energy eigenvalues. Moreover, the
perturbation analysis predicts a qualitatively identical struc-
ture for all avoided crossings which allows us to characterize
generically their affect on dynamical tunneling. This descrip-
tion was applied to a particular avoided crossing generating
multiple-state tunneling oscillations in an experimental sys-
tem, and its connection to a nearby diabolical point was re-
vealed. It is hoped that these results will provide guidance
for the development of new experimental setups which in-
tend to use avoided crossings in the realization of multiple-
state tunneling processes and adiabatic transitions or the
preparation of Schrödinger’s-cat-type superposed states.
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APPENDIX: PERTURBATION THEORY FOR AVOIDED
CROSSINGS

The Floquet pendulum system ĤF
0��� has a twofold de-

generacy at �=�0 where two eigenstates �	0���n	��0� ,q	�

and ��0���n���0� ,q�� have eigenvalues 
	��0�=
���0�.
We will use a modified degenerate perturbation theory to lift
this degeneracy at the � position of the resulting avoided
crossing when ��0. In light of the discussion in Sec. IV B,
we write the Floquet Hamiltonian as

ĤF��� = ĤF
0 + ĤF����� + �V̂ , �A1�

where we now write ĤF
0 � ĤF

0��0�. The operator ĤF is

�ĤF /��=cos �̂ with the simplifying assumption that this op-
erator is diagonal in the unperturbed basis. This is equivalent
to the assumption that the unperturbed eigenvalue curves are
linear in the small region of � under consideration. We ex-
pand �����, setting ���0�=0, so that

����� = ���1�� + ���2��2 + ¯ . �A2�

We expand the near-degenerate eigenstates and eigenvalues
in powers of � about their ��=�0 ,�=0� values:

��� = C	�	0� + C���0� + ���1� + �2��2� + ¯ ,


 = 
�0� + �
�1� + �2
�2� + ¯ , �A3�

where ĤF
0 �	0�=
�0��	0� and ĤF

0 ��0�=
�0���0� and the zeroth-
order eigenstates have been assumed to be a superposition of
the two degenerate unperturbed states. As is usual in degen-
erate perturbation theory, the lowest-order near-degenerate
eigenstates and the corrections to their eigenvalues will be
the eigenvectors and eigenvalues of a 2�2 matrix in the
basis of the two degenerate unperturbed states. At this order,
we will make the distinct assignments ���→ ��±� �corre-
sponding to the solutions of the quadratic characteristic
equation�. The final expressions for C	

±, C�
±, ��±

i �, and 
±
�i�0�

will depend on � through the particular choice of the ���i�’s.
The Floquet eigenvalue equation �7� for the near-degenerate
state now takes the form

FIG. 10. Floquet eigenvalue curves for the
system considered in �12� ��=� /2, �	6.04�.
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��ĤF
0 − 
�0���C	�	0� + C���0��� + ���ĤF

0 − 
�0����1�

+ ����1�ĤF + V̂ − 
�1���C	�	0� + C���0���

+ �2��ĤF
0 − 
�0����2� + ����1�ĤF + V̂ − 
�1����1�

+ ����2�ĤF − 
�2���C	�	0� + C���0��� + ¯ = 0.
�A4�

First-order results

At first order in � we have the eigenvalue equation

�ĤF
0 − 
�0����1� + ����1�ĤF + V̂ − 
�1���C	�	0� + C���0��

= 0. �A5�

If we now act on this equation with �	0� and then with ��0�,
we obtain


���1�E	 + V		 − 
�1� V	�

V�	 ���1�E� + V�� − 
�1� �
C	

C�
� = 0 ,

�A6�

where Vij are the matrix elements of the perturbation in the
basis of the degenerate unperturbed eigenstates,

Ei � ��ni,qi�ĤF�ni,qi�� = �ni�cos �̂�ni� , �A7�

and we have used the identity

FIG. 11. The boxed region of
Fig. 10 where an avoided crossing
occurs between two even-parity
states �a�. The Husimi distribu-
tions of these and a third,
odd-parity, state are overplotted,
with axes of �0� �0,2�� and
p� �−6,6�. The differences of
these three eigenvalues are shown
as solid lines in �b�, with experi-
mental tunneling frequencies
�circles� overplotted �reprinted
with permission from Steck et al.
�12�, Fig. 1�.
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1 = �
�

��0���0� � �
�n� ,q��

�n� ,q���n� ,q�� = �
n,q=−�

�

�n,q��n,q� .

�A8�

At this point, we must consider two possible cases V	��0
and V	�=0. In the first case, a nontrivial solution for the Ci
requires first-order corrections to the unperturbed Floquet
eigenvalues:


±
�1� =

1

2
�V		 + V�� + ���1��E	 + E��� ±

1

2
���V		 − V���

+ ���1��E	 − E���2 + 4�V	��2�1/2. �A9�

We can then write the spacing between the two Floquet
eigenvalues:

�
 � 
+
�1� − 
−

�1� = ����V		 − V��� + ���1��E	 − E���2

+ 4�V	��2�1/2 + O��2� . �A10�

In order to determine the particular value of ���1� at which
the minimum spacing occurs, we solve the extremal equation

FIG. 12. Numerical evolution �squares� of a
positive-momentum-centered initial state under
the time-evolution operator at �=3.68 �a� and
4.50 �b�, with experimental values overplotted
�circles, reprinted with permission from Steck et
al. �12�, Fig. 2�.

FIG. 13. Eigenvalue surfaces, over �-� space, of the even-parity
Floquet eigenstates involved in the avoided crossing of Fig. 11�a�.
The eigenvalues on the particular curve investigated in Ref. �12� are
overplotted in bold. A dashed line traces the minimum separation of
the two surfaces from the diabolical point at �=0, �	2.8 to the
avoided crossing seen in the experiment.
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 ��


���
�

�

=
1

�

 ��


����1��
�,���m�

= 0 �m � 1� , �A11�

finding that

��ac
�1� =

V�� − V		

E	 − E�

. �A12�

If we substitute this into Eq. �A9�, we obtain first-order cor-
rections to the eigenvalues of


±
�1� =

V��E	 − V		E�

E	 − E�

± �V	�� . �A13�

Therefore, we find the minimum splitting to be

�	� = 2��V	�� + O��2� . �A14�

In the second case �V	�=0�, we find that the nearest ap-
proach of the two Floquet eigenvalues is in fact a crossing
�to first order in ��. In this case we define ��ac

�1� to be the
offset of this crossing—i.e.,

�
 = O��2� at ��ac
�1� �

V�� − V		

E	 − E�

. �A15�

The coefficients Ci remain undetermined until the degen-
eracy is broken.

Second-order results „V��=0…

For the case V	�=0, the zeroth-order states must be de-
termined from the second-order equation, which takes the
form

�ĤF
0 − 
�0����2� + ����1�ĤF + V̂ − 
�1����1� + ����2�ĤF

− 
�2���C	�	0� + C���0�� = 0. �A16�

Following the same procedure as in first order, we obtain


���2�E	 + v		 − 
�2� v	�

v�	 ���2�E� + v�� − 
�2� �
C	

C�
� = 0 ,

�A17�

where we have used the first-order result

��0��1� =
V�	C	 + V��C�


�0� − 
�
�0� �� � �	,��� , �A18�

with 
�
�0�= �n� ,q��ĤF

0 �n� ,q�� and where we have defined

vij � �
���	,��

Vi�V�j


�0� − 
�
�0�

�i, j � �	,��� . �A19�

Again we must consider two cases v	��0 and v	�=0. In the
first case, our procedure for determining ��ac

�2� is identical to
that of first order and we obtain

��ac
�2� =

v�� − v		

E	 − E�

, �	� = 2�2�v	�� + O��3� . �A20�

In the case that v	�=0, we find that �
=O��3� at an offset
of

��ac
�2� =

v�� − v		

E	 − E�

. �A21�

Third-order results (V��=0 and v��=0)

If the conditions V	�=0 and v	�=0 are satisfied, we can
attempt to lift the degeneracy at order �3. We obtain the
results


���3�E	 + v		 + v̄	 − 
�3� v	�

v�	 ���3�E� + v�� + v̄� − 
�3� �
�
C	

C�
� = 0 , �A22�

where we have defined

vij � �
�,���	,��

Vi�V��V�j

�
�0� − 
�
�0���
�0� − 
�

�0��
�i, j � �	,���

�A23�

and

v̄i � �
���	,��

����1�E� − 
�1��Vi�V�i

�
�0� − 
�
�0��2 �i � �	,���

�A24�

and where we have used an expression for ��0 ��2� �analo-
gous to Eq. �A18�� determined from the second-order equa-
tion.

These equations are nearly of the same form as those at
first and second order. By the same procedure we determine

��ac
�3� =

v�� + v̄� − v		 − v̄	

E	 − E�

, �	� = 2�3�v	�� + O��4� ,

�A25�

for the case that v	��0 and �	�=O��4� when v	�=0.
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