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Stimulated-Raman-adiabatic-passage-like transitions in a harmonically modulated optical lattice
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We introduce a method for the coherent acceleration of atoms trapped in an optical lattice, using the
well-known model for stimulated Raman adiabatic passage (STIRAP). Specifically, we show that small har-
monic modulations of the optical lattice amplitude, with frequencies tuned to the eigenvalue spacings of three
“unperturbed” eigenstates, reveals a three-state STIRAP subsystem. We use this model to realize an experi-
mentally achievable method for transferring trapped atoms from stationary to motional eigenstates.
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I. INTRODUCTION

Stimulated Raman adiabatic passage (STIRAP) is a
method for achieving coherent transitions between quantum
states by applying two coupling fields in a nonintuitive pulse
sequence. The frequencies of these fields are tuned to the
eigenvalue spacings between the “initial” and “target” states
and a third “intermediate” state. When the coupling of the
target and intermediate states precedes that of the initial and
intermediate states in time, population transfer from the ini-
tial to target state is achieved. In the adiabatic limit, the
transition is 100% efficient and involves no occupation of the
intermediate state. The use of STIRAP for atomic and mo-
lecular systems was first demonstrated experimentally by
Gaubatz and co-workers [1,2], who achieved population
transfer between vibrational levels in a beam of sodium mol-
ecules. Further references on the STIRAP transitions in at-
oms and molecules can be found in the review by Vitanov et
al. [3]. In atom optics experiments, STIRAP has been used
for coherent momentum transfer [4-6], and velocity-
selective coherent population trapping for laser cooling of
trapped atoms [7,8]. Extensions of STIRAP, with a particular
focus on the influence of quantum chaos, have been studied
by Na and Reichl [9,10]. Na er al. [11] have also used STI-
RAP to control the isomerization transition of HOCI.

As a theoretical model, STIRAP can be defined by the
adiabatic behavior of a three-level system, which in some
basis (|a),|b),|c)) is represented by the Hamiltonian

0 W) o0
H(t')=-Z| Wi(') =20 W) |, (1)
0 W,(t") 0

under the variation of Wy and W, via the dimensionless pa-
rameter ¢, with A a constant. This model, which we refer to
as the “STIRAP model” hereafter, was first introduced by
Kuklinski et al. [12], following significant work by Hioe er
al. [13—15], to succinctly describe the experimental results of
Gaubatz ef al. [1]. Starting from a system in which the pairs
of states (|a),|b)) and (|b),|c)) are each dipole-coupled by
monochromatic electric fields, the STIRAP model is derived
by applying the rotating-wave approximation and assuming
an equal detuning of the coupling frequencies A (see Fig. 1).
In that particular system the W, are the Rabi oscillation fre-
quencies corresponding to the two couplings. The STIRAP
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transition, however, does not depend on the physical system
from which Eq. (1) is derived. In an application of this model
by Eckert et al. [16], for example, the functions W,(¢') were
related to the spatial separations of three optical microtraps
in order to induce coherent transport of atoms between the
ground states of the two farthest separated traps.

The matrix in Eq. (1) allows for a transition of the type
described above because of the existence of the eigenvector

[1()) = cos 6(t')|a) — sin 6(¢")|c), (2)
Wi(t') .
where tan 0(t') = W Under the conditions
H(t")
W, (t' Wo(t'
tim ,) 0 and fim 22 ,) -0, (3)
PSS Wz(t ) t 400 Wl(t )

the adiabatic evolution of state |1) is from |a) to |c). Thus, the
transition is achieved by first coupling the upper two levels
and then coupling the lower two (in some continuous, e.g.,
Gaussian, manner). Moreover, because of the form of the
eigenvector |1), the state |b) remains unoccupied throughout
the transition.

In this paper, we apply the method of STIRAP to the
motional states of atoms in an optical lattice. As was shown
by Graham, Schlautmann, and Zoller [17], the interaction of
a single transition in an alkali atom with a pair of counter-
propagating lasers can be reduced to an effective Hamil-
tonian for the center-of-mass motion of the atom in a cosine
potential. Modulation of the laser amplitudes and/or the in-
troduction of laser pairs with offset frequencies introduces a
periodic time dependence (see Appendix A). Here we will
analyze the “two-resonance” system described by the effec-
tive Hamiltonian

I:Io(t) = p% + ko[ cos £ + cos(£ — wyr)], (4)

where each of the two cosine terms are produced by a pair of
counterpropagating lasers with «, proportional to the square
of the laser amplitudes (here and throughout this paper we
use the dimensionless variables defined in Appendix A). We
show, using perturbation analysis of an associated Floquet
Hamiltonian, that small harmonic modulations of the laser
amplitudes can be used to affect a STIRAP-like transition of
a state localized in the stationary cosine well into a state
localized in the traveling cosine well. Thus, atoms trapped in
a stationary optical lattice are coherently transferred into a
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FIG. 1. The three-level “ladder” STIRAP system [Eq. (1)] with maximum coupling strength max[ W (¢")]=max[ W,(¢")]=10A. Coupling
fields are applied with frequencies equally detuned from the spacings of the unperturbed energy levels by A (a). Adiabatic variation of the
amplitudes of the coupling fields over the dimensionless parameter #' (b) in the manner described by Eq. (3) affects a transition of the |1)
eigenvector between basis states |a) and |¢) (d). The eigenvalue corresponding to this state remains unchanged at zero throughout the

transition (c).

traveling lattice with dimensionless velocity .

In Sec. II we present an analysis of the time-independent
“quantum pendulum” system which reveals a three-level
STIRAP model in the regime of small perturbation. Section
IIT contains a slightly modified method in order to obtain a
STIRAP-like model for the time-dependent “two-resonance”
system. In each case, adiabatic results are compared to nu-
merical evolution of the Schrédinger equation and transitions
of nearly 100% efficiency are observed. Concluding remarks
are presented in Sec. IV.

II. STIRAP TRANSITIONS IN THE QUANTUM
PENDULUM

Before analyzing the two-resonance effective Hamiltonian
presented in the introduction, we will consider STIRAP-like
transitions within the quantum pendulum system,

I:Ipend = p? + K COS £. (5)
This is the simplest type of effective Hamiltonian for optical
lattice experiments, achieved with a single pair of counter-
propagating lasers with equal frequencies. The parameter
is proportional to the square of the electric field amplitude.
Because of experimental techniques which can limit the di-
mensionless momentum values to the integers (see Appendix

A), the eigenstates can be considered spatially periodic with
period 27. The position space solutions to the eigenvalue

equation I:Ipend| X =E,|x,) are the Mathieu functions (x| x,)
(n € Z) [18], with n even labeling even-parity functions and
n odd labeling odd-parity functions.

To affect a transition in this system using STIRAP, we add
a time-periodic modulation of the lattice amplitude of the
form

AV(z) = \ cos i ky cos(1) + K, cos(Q,1)], (6)

where N is small, and ; and (), are commensurate with
%:Z—; (m; € Z). Tt is useful to write {}; and (), in terms of a
common frequency o such that Q;=m;0 and Q,=m,w,
where w= 2—;7 and T is the periodicity of the perturbation. This
perturbation is achieved experimentally by modulating the
intensity of the counterpropagating laser radiation about the
Ko value, meaning that the lasers’ electric field amplitude

E(r) should take the form
|E(1)|> ~ ko + N &, cos(m wt) + K, cos(mywt)].  (7)

For now, we will consider the coefficients x| and k, to have
constant values. Perturbation analysis will reveal that, for
small values of A, there exists a three-state subsystem iden-
tical to the STIRAP model, parametrized by these coeffi-
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cients. A STIRAP-type transition can then be affected by
adiabatic variation of k; and «, in the manner described in
Eq. (3). The justification of this time parametrization of the
k;, following a Floquet analysis of the system where they are
considered constant, is provided in Appendix B.

Having required that the frequencies (), and (), are com-
mensurate, we can analyze the dynamics of the full system

2 140) = e+ MO, ®)

using Floquet theory, which we review briefly here. Any so-
lution of Eq. (8) can be written in the form

|¥a(1)) = €| (1)), )

where the Floquet eigenstate |¢,(t)) is periodic in time with
period T, and €, is called the Floguet eigenvalue. Plugging
this solution into the Schrodinger equation we arrive at the
eigenvalue equation

I:IF|¢Q> = (I:Ipend + )\‘A/(t) - lg) |¢a> = Euz|¢uz>’ (10)

where the Floquet Hamiltonian H r 1s a Hermitian operator in
an extended Hilbert space which has time as a periodic co-

ordinate [19-21]. Diagonalization of Hj in some convenient
basis in this space yields the Floquet eigenstates and eigen-
values. The Floquet eigenstates have an infinite multiplicity
with respect to the solutions of the Schrodinger equation in
the sense that for any Floquet eigenstate |¢(f)) with eigen-

value €, there exists another solution |¢(r))=eC”| (1))
(Q e 7,) with eigenvalue €= e+ Qw. These two Floquet states
are, however, associated to the same physical state, i.e.,
[y(1)) = e (1)) =¢"| p(r)). The implication of this fact is
that the dynamics of the physical system can be understood
by considering only those Floquet states whose eigenvalues
appear in a single “zone” €* < e< "+ w, labeled by the con-
stant €*.

The STIRAP model system is derived by applying pertur-

bation theory to Eq. (10), where the two frequencies in V()
are chosen to “couple” three pendulum eigenvalues, at a par-
ticular value of kg, in the manner shown in Fig. 1(a). Al-
though, in general, the ratio of these eigenvalue spacings is
not rational, the equal detuning A allows for {1, and (), to be
chosen as commensurate. More precisely, given three eigen-
values of the quantum pendulum E,<E,<E_ any pair of
integers (m;,m,) uniquely determines A and  via the
coupled equations

m1w=Eb—Ea—A,

mw=E.—E,+A. (11)

Eliminating @ we obtain an expression for A,

PHYSICAL REVIEW A 76, 013420 (2007)

mywy — nyw
A= 2W1 1 2’ (12)
my+my

where we have defined w;=E,—E, and w,=E_.—E,. We can
see that the integer vectors n = (m,,m,)” which minimize A
are those which satisfy

-

=0 with 5= (= wyw,) (13)

Therefore, the best choices for 7 are those for which m,/m,
are the best rational approximants of the ratio w= w,/ w,.
Let us denote the unperturbed Floquet Hamiltonian

(I:IF when A=0) as

. . K]
H%szend—zgt. (14)

In the extended Hilbert space, I-AI(} has normalized eigenstates
of the form

1
nq) = lplx) == x), qeZ.  (15)

(t ,
\NT

The corresponding eigenvalues are 62,q=En+qw. We are in-
terested in the dynamics of an initial population of atoms
localized in the pendulum state |y,). With A=0, state |x,) is

represented in a particular zone of Floquet eigenvalues of I??p
by a Floquet eigenstate |a,q,) with eigenvalue €14, in that
zone. The coupling frequencies (), and (), have been chosen
in Eq. (11) such that e(c)’ 4 the Floquet eigenvalue in that zone
corresponding to the phglsical state |x.), is equal to 62’% and

the eigenvalue eg’qb is offset from this value by A. The de-
generacy of these two eigenvalues and the near degeneracy
of the third requires that any perturbation analysis must be
performed in the degenerate form [21]. Therefore, we expand
the extended Hilbert space state |¢) in powers of the small
parameter A,

|6) =167+ N¢) + N[ P) + -+ (16)

and take the zeroth-order state to be a superposition of the
three degenerate or near-degenerate eigenstates of H%,

4=,

b,qb> + CC

a’qa> + Cb C’qc>' (17)
The eigenvalue is likewise expanded in orders of the small
parameter,

e= eV nel) 4+ N2@ 4 - (18)

For brevity of notation, we write the unperturbed eigenstates
la)=la.q,), |bY=|b,q;), and |c)=|c,q.), with associated ei-
genvalues €,=¢, 4, €= €b.gy and €,=¢€_ 40 respectively.

Retaining terms up to first order in A, we obtain an iso-

lated subsystem of Eq. (10):
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Q+\Vue NV o NV \[C, C
NVya  €+NV,, AV, c, |=¢€|cy |,
\V., AVe, €+\V../\C. C.

(19)
where € = €2+ Ne') and we have assumed that A is of order

\. The matrix elements of the perturbation are determined in
the following way:

V= {{i.qi V]

7w
j.a;) = j (qilotlgXxilcos £|x;)

—7lw
X[k cos(m,wt) + K, cos(m,wt)]dt

_ {xilcos £|x,)

> (Klﬁq/’q[+m1 + K15

q.9;~m;
+ K2 5qj’ql_+m2 + K2 5qj’qi_m2) 5 (20)

where it is customary to express the inner product in the
extended Hilbert space with double brackets. The selection
of Q) and ), guarantees that the ¢ indices for these states
satisfy

gp=qa=my and g.—q,=my. (21)
Therefore, the only nonzero matrix elements of the perturba-
tion are V,,=V,, and V, .=V, ,. Further, we can write

Var=Voa=K1Vap and V, =V, ,=K0,., (22)

where the numerical values of

(xilcos £|x;)
U[’j= Tj (23)

are calculated using the Mathieu functions. Subtracting
eg(Ca,Cb,CL.)T from both sides of Eq. (19) and redefining
e’—62—> €', we arrive at

0 7\K1Ua,b 0 Ca Ca
NKVp 4 A Nupe || Cp |=€'| Cy |, (24)
0 }\K2Ub,c 0 Cc Cc

which is equivalent to the STIRAP model system. Thus, in
the limit of small \ (and A), the parameters ; and x, can be
adiabatically varied in the manner described in the introduc-
tion to affect a transition between the unperturbed states |a)
and |c).

We now provide a concrete example on which to demon-
strate the analysis. Figure 2(a) shows the energies of the first

few eigenstates of I:Ipend as a function of «,. Husimi repre-
sentations [21,22] of the even eigenstates, at «,=8, are
shown in Fig. 3. At this value of k; we choose energies
E,=E,, E,=E,, and E.=Eg for coupling. These energy levels
have spacings w,=E,—E,=12.5668395 and w,=E.—-E,
=3.663 047 2 with ratio

PHYSICAL REVIEW A 76, 013420 (2007)

w=3.43070639--- =[3,2,3,9,...]=3+
2+
3+

1
9+...
(25)

Thus, the best rational approximants of w, found by truncat-
ing the continued fraction, are %,%,%,%, 1 Using the
third approximation, the modulation frequencies shown in
the example have been chosen to be );=24w and Q,=7w,
giving ©=0.5235 and A=1.766 X 1073,

In Fig. 2(b), the Floquet eigenvalues of H(} are shown in
the zone €*=0. In the inset figure, one can see that eg
= 68’12 and e?: 62,—19 are equal at xp=8 and 62= Eg’_lz is offset
by A. Using the Mathieu functions, the perturbation matrix
elements are calculated to be

Vs =Vha=Kap=—1.16 X 107k, (26)

Viye=Vep= K05, =250 X 107 k. (27)

To accomplish a STIRAP transition from |a) to |c), we
give k; and k, Gaussian dependence on an adiabatic time
parameter ¢’ [see Fig. 4(a)],

’ 2
1) ) (28)

k(') = exp(— 57

The conditions of Eq. (3) are satisfied by setting t,=—t,
=1.0 and o;=0,=1.0. Figure 4 shows good agreement be-
tween the adiabatic dynamics of the model system in Eq.
(24) [Figs. 4(b) and 4(d)] and that of the full Floquet Hamil-
tonian [Figs. 4(c) and 4(e)].

The implementation of this transition in an experimental
system (or the numerical evolution of the Schrodinger equa-
tion) is not dependent on the time periodicity which we have
required thus far. Floquet analysis has proven to be an essen-
tial theoretical tool in revealing the existence of the STIRAP
model, but the method has introduced no upper limit on the
integers m; and m, whose ratio approximates w;/,. There-
fore we may choose the coupling frequencies to be resonant
(Q=w; and Q,=w,) to any desired accuracy. The results for
the numerical evolution of the effective Schrédinger equa-
tion in Eq. (8) are shown in Fig. 5(a), for the case of both
resonant and near-resonant coupling (A=1.77 X 1073) with
A=0.1. The evolution was performed over a set time period
[0,#,,] with initial condition [{x,|#)|*=1, and Gaussian pa-
rameters for the coupling amplitudes «; and «, of o;=0,
=0.1t, 1;=0.61, and 1,=0.41,,. It is seen that resonant cou-
pling provides a more rapid approach to the adiabatic behav-
ior. In Fig. 5(b), good agreement is seen between the reso-
nant evolution of the full effective Schrodinger equation and
the adiabatic predictions of Fig. 4(e).

III. STIRAP TRANSITIONS FROM STATIONARY TO
MOVING ATOMS

We now consider the case in which the “unperturbed”
Hamiltonian has the form of Eq. (4), which consists classi-
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FIG. 2. The lowest seven energies of the quantum pendulum (a) as a function of the parameter « (solid lines are the energies of

even-parity states, dotted odd). The coupling of levels Ey—FE, and E,—FEg at x,=38 via the perturbation \7(1) requires a Floquet treatment of
the pendulum system. The corresponding Floquet eigenvalues (for @=0.5235) are shown in (b). The degeneracy and near degeneracy of the

three coupled eigenvalues can be seen in the enlarged (inset) view.

cally of a stationary cosine wave and a cosine wave that
travels through phase space with a speed w,. Our goal is to
cause a coherent transition of an entire cloud of trapped at-
oms from a state localized in the stationary wave (in the
sense of its Husimi distribution) into a state localized in the
traveling wave, so that the entire collection of atoms changes
velocity from v=0 to v=w.

Our approach is analogous to that of the preceding sec-
tion. We apply perturbation theory to a Floquet eigensystem
of the form

Hp(0)| ¢(1)) = [HM0) + \V(D)] (1)) = el (1)), (29)

where IEIF is periodic in time with period T=27/w and the

perturbation operator V has the same form as in Eq. (6).
Again we find that, in the limit of small A\, there exists an
isolated three-level subsystem in which a STIRAP-type tran-

sition between eigenstates of I:I% can be induced. The con-
struction of Hy, however, differs significantly from the pre-

ceding section because of the explicit time dependence of the
two-resonance Hamiltonian. In the pendulum analysis, the
frequencies (), and (), were chosen to couple the energies of
pendulum eigenstates. Here, these frequencies are chosen to
couple the eigenvalues of the two-resonance Floquet Hamil-
tonian,

o J
Hg(t) = p? + Ko[cos £ + cos(X — wyt) ] — IE, (30)

within a particular zone (note that we have redefined Iflg in
this section). Selection of coupling frequencies such that they
and o, are commensurate allows for Floquet analysis of the

full system, but requires that the eigenstates of I:I(} be trans-
lated from their natural Hilbert space, containing functions
periodic in time with period T=27/w,, into the space con-
taining 7T-periodic functions of time. The relevant Floquet
eigenvalues associated to the eigenstates in this latter space
take near-degenerate values and perturbation analysis leads

013420-5
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FIG. 3. (Color online) The Husimi functions of the first four even-parity eigenstates of the quantum pendulum on the dimensionless

classical phase space coordinates (xg,po). The states are, clockwise from top left, |xo),|x2),

to similar results as the preceding section. [It should also be
noted that although we call the two-resonance system in Eq.
(30) an “unperturbed” Hamiltonian, it is not analytically
solvable. Perturbation theory will be a useful tool to demon-
strate the existence of a STIRAP-like model for this system,

but the eigenstates of 1512 and all related quantities (e.g., the
matrix elements of the three-level system) must be deter-
mined numerically. ]

We begin by constructing Floquet eigenstates |<7>g) of ﬁ%
(the “overbar” will be used to indicate that these states be-

X6>v X4)-

long to the Hilbert space H, defined below). We will assume
that the parameters «, and w, have constant values, which
may be set arbitrarily. The only limitation on this choice is
that, given w, «y should be chosen such that the set of eigen-
states with eigenvalues in a particular zone contains one state
localized purely in the stationary cosine wave and one state
localized in the traveling wave (i.e., a «, value far from
avoided crossings involving the eigenvalues of these states).

The eigenstates |¢) lie in the extended Hilbert space H
=0®®7, where O is the space of all 27r-periodic, square-

013420-6
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FIG. 4. Adiabatic evolution of the pendulum system under STIRAP coupling, comparing the dynamics of the model in Eq. (24) [(b) and
(d)] to that of the full Floquet Hamiltonian in Eq. (8) [(c) and (e)] for A=0.1. It is useful to compare this evolution to that of the model system
presented in Fig. 1. The coupling field k, is seen to have a greater effect on the eigenvalues at '=—1 than that of «; at ¢'=1, since |vb,c|
>|v,5|. This asymmetry also shifts the transition of the |1) eigenvector from unperturbed state |a) to |c) to a later time [(d) and (e)]. All
plotted quantities are dimensionless functions of the dimensionless parameter #’.

normalizable position-space functions and 7 is the space of

all T-periodic, square-normalizable functions of time. We se-
lect the complete set of momentum eigenvectors |n) (see
Appendix A) as a basis in ® and the analogous eigenvectors

lg) as a basis in 7, yielding normalized basis vectors in the
extended space which can be written

| I
(x,tln,q) = (xn)tlg) = —==e""e'1™, (31)
27T
with n,q € 7. The eigenstates |q7§g) can then be written
. | -
| polt) = 2 —=e"n,q| $Dln). (32)
n,q \/;"

where |2(1))=(t| #) and the coefficients (n,q| ) are de-

termined by diagonalization of I;Vg in H.

We select a zone e*$Eg< €+ wy within which to per-

form a coupling of the eigenvalues €. of ﬁOF Two of these
eigenvalues, which we denote ES and €, correspond to eigen-
states localized in the stationary and traveling waves, respec-
tively. A third eigenvalue Eg is chosen with the restriction
that the corresponding eigenstate is localized “nearby” in
phase space (the matrix element of cos X between this and
the other two states should not be vanishingly small). As
before, the coupling frequencies €}, and (), must be chosen
to be commensurate. In this case, however, analogous equa-
tions to Egs. (11) cannot be solved simultaneously with the
requirement that w, is likewise commensurate,

Wy = Mmyw (mo S Z) (33)

Therefore, in the following, we will relax the equal detuning
requirement and allow for two independent detunings de-
fined by the equations

013420-7
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FIG. 5. (Color online) The numerical evolution of a state ini-
tially localized in the |y,) pendulum state (|(x,|¥(t=0))|>=1), un-
der STIRAP coupling of the energies. The probability of a nonadia-
batic transition (transition to any state other than |c) in time f=1f,)
is plotted versus the width of the Gaussian fields o=0,=0,
=0.1#,, (a). The coupling strength was fixed at A=0.1 with maxi-
mum values of the two fields for a particular realization occurring at
11=0.6t,, and 7,=0.4t,,.. The approach to adiabaticity for the evo-
lution of the effective Schrodinger equation is seen to be more rapid
in the case of resonant coupling (squares) than for near-resonant
coupling (triangles); solid lines show the evolution predicted by the
three-state model. (b) shows the full numerical evolution under the
Schrodinger equation corresponding to the point at 0=6000 with
resonant (A=0) coupling in (a). A state classically localized within
the pendulum well transitions to one localized on the separatrix
(axes on inset Husimi functions are the same as in Fig. 3). The
horizontal axes of both plots are dimensionless time measured in
units of 44%.

-0 =0
Q] =m1w=(6b—6a)—Al,

Qy=mw=(&-8)+A,. (34)

Given any integer vector m= (mg,m,,m,)’, Egs. (33) and
(34) can be solved for (A;,A,, w). Eliminating  and defin-
ing o, =€,—€ and w, =€ —€), we obtain

myw; — n;w,
Al = —,
my
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mywqy — Myw;

A, = (35)

my

Thus, we see that the integer vectors /. which simultaneously
minimize the two detunings will be those closest to the vec-
tor  perpendicular to the plane  defined by
W= (w;,-w,,0)" and ¥ =(-w,,0, w,)". This perpendicu-
lar vector is of course n=(w,,w;,,)T, and the problem of
minimizing the detunings is reduced to finding the best inte-
ger approximate of 7 or, equivalently, finding the simulta-
neous pair of rational approximants for (w,/wg, w,/ wy).

In the context of the three-level model system presented
in the introduction, nonequal detuning of the coupling fre-
quencies leads to a Hamiltonian of the form

L0 W 0
H=- E Wl - 2A1 W2 . (36)

It was recognized by Kuklinski et al. [12] that this system
could allow for a STIRAP transition, despite the absence of
an analytical result analogous to Egs. (2) and (3), as long as
the condition \W3+W3>|A,~A,| is satisfied. In order to sat-
isfy this requirement, and that of small perturbations, we will
seek integer vectors m which provide detunings |A,—A,|
<|A||=1.

Since the full, perturbed system H #(2) is periodic in time
with period T=27/w, we must determine the eigenstates of
the unperturbed Floquet Hamiltonian in the extended Hilbert
space H=0O ® 7, where 7 is the Hilbert space of T-periodic
functions. These eigenstates |¢?1) can be expanded in H as

1 .
|20 = > —Ee’qw’m,q W), (37)

ng V

where the basis vectors (f|g) now have the time periodicity
of 7. Since the Schrodinger equation for the unperturbed
system

l£| (1)) = {p* + Kolcos £ + cos(x — wyt) [} (1)) (38)

can be viewed as time periodic with either period T or T
=m,T, a physical solution |,(r)) can be written, using Eq.
(9), in terms of a Floquet state with either periodicity. Equat-
ing these two representations, we obtain a relationship be-

tween the Floquet eigenstates of I:I?; in spaces H and H,
exp(= igg)|Ba(1) = A exp(—ien)| o), (39)

where eg is the eigenvalue associated to |¢g(t)> and A is a
proportionality constant. Equating coefficients of the mo-
mentum eigenvector |n) in Egs. (32) and (37), we find

o

> expligmowi)n.g
q

= E A’ expli(q' o - 62 + Eﬂ)t]{n,q'|¢g>, (40)

q

where A’ is again a constant. A nontrivial solution to this
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equation requires that the eigenvalues satisfy eg—Eg:Qw,
where Q is an integer. We see, then, that associated to each

Floquet eigenstate in 7 is a family of eigenstates in 7,

{| ¢(c)v,Q>’ e(c)z,Q}’ Q € Z’ (41)

with e(;’Q=E(;+Qw. Selecting a particular value of Q, Eq.
(40) becomes

> expligmowr){n,q| >

q

= > A" expli(q’ - Qorn.q' |0 ).  (42)

q

Equating coefficients of the exponentials, we find

n,ﬂwﬁo when q-0 e Z,
0 a
¢Q,Q> = my mgy

0 otherwise,

(n.q

(43)

where we have set A’ =1 under normalization. Therefore we
see that the unperturbed eigenstates in the space H have
nonzero coefficients (n,q| ¢>§’Q> only at mg-separated values
of g, with an offset of Q from ¢=0.

Within a particular zone, we denote the unbarred eigen-

. -0 =0 =0 0 0 0 .

values corresponding to {€,, €,, €} as {Ea,Qa’ €0, Ec,Q(.}’ with
values related by

0 0 _
€0, a,Qa_Ah

€0, €0, = Mo, (44)

and the corresponding eigenstates {|¢2’Qa>’ ¢2~Qb>’ ?%Qc)}'
The Q indices of these states are related by Q,—Q,=m; and
Qb_Qc‘:mZ'

Perturbation analysis of Eq. (29) is now performed by
expanding the eigenstate |¢) and eigenvalue € in powers of
. Assuming that |¢2Q ) is initially occupied with probability
one, and taking into account the near-degeneracies of Eq.
(44), the zeroth-order term in the expansion of the perturbed
eigenstate is chosen to be of the form

|¢(0)> = Ca| ¢2,Qa> + Cb|¢2,Qb> + Cc| ¢8,Qc>~ (45)

Retaining terms up to first order in A and making the as-
sumption that A; and A, are of order A, we obtain

@+\Vuu NV o NV \[C, C
ANVya  €+NV,, AV, c, |=¢€|c, |,
AV, ANVe, €+\V../\C. C.

(46)

where € = 62+)\€<1) and the matrix elements are calculated,
defining |i)= |¢2Q_>, as follows:

PHYSICAL REVIEW A 76, 013420 (2007)

v, =WiVin= X

’ !
n,q.n'.q

n,q)nlcos £n")n".q'[/))

X[ k1{g|cos(m wi)|q") + Ky{g|cos(mywi)|q’)]

1 a ’ . ’ .
=3 > xilnlcos £n"Y({iln,gXn' ,q + m|j)

’
n.q.n

+{iln,q)n"q —my|j))

n.gXn'.q +myj)
n.g)n',q—ml)). (47)

Recalling the structure of the states |¢2Q_> given in Eq. (43),
we see that the sum

S Gilng)n’ g+ mli) = 2 (),
q q

+ Ky{n|cos £|n")((i

+(i

n’q><n,7q + m| ¢§]‘Qj>’

(48)

can be nonzero only when Q;+m=Q;+km, with k € Z. Thus,
the only nonzero matrix elements of Vin Eq. (46) are

Vo= 3 Z Galnadln+ 1g=mb)
+aln.g)n 1.g = m[b)
= 4 2 (@hna)n+ 1al )+ (Folnaa)n = 1.4l B)
. <<<?>2|<cos;e ® DI 4) )
and
Vo= 3 2 (blna)n+ 1. =mle)
+(bln.g)n = 1.g = my|c))
= G (Bl 1.0l )+ Bl 1.410)
_ Sdilleos 2o D) 50)

2

where the second and third equalities for each matrix ele-

ment have been written in terms of the Floquet states in H,

using Eq. (43). Subtracting €X(C,,C,,C,)" from both sides,

redefining e’—62—> €', and defining v, ,=V,,/x; and v,

=V,../ k3, Eq. (46) becomes

0 NKUgp 0 C, C,
Ncivpe A Ny || G | =€ Gy [, (51)
O )\KZUC,}) Al - Az CC (jC

which is equivalent to the desired model system in Eq. (36).

Again, we provide an example system on which to dem-
onstrate the analysis. Figure 6(a) shows some eigenvalues E‘;
of the two-resonance Floquet Hamiltonian, in the zone la-
beled by € =—w,/2 with w,=6.180 339 887, plotted as func-
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-0.004

-0.006

-0.008
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FIG. 6. Eleven eigenvalues of the two-resonance Floquet Hamiltonian with w, =~ 6.18, viewed as an operator in H, plotted as a function
of kg (a). The corresponding “unbarred” Floquet eigenvalues of the same Hamiltonian, viewed as an operator in the space H with
=w/325, are shown in the zone labeled by €*=—w/2 (b). The near degeneracy of three eigenvalues 62,Q , eg’Qb, and e(c),Q at kp=1 can be
seen in the inset. It is evident that there are other eigenvalues nearly degenerate with these three, however these need not be considered in
Eq. (45) since their respective Q values will yield zero-valued matrix elements.

tions of «,. A triplet of eigenvalues 22<E2<E?, has been
chosen at ky=1 for STIRAP coupling. The Husimi functions
of the three corresponding eigenstates are shown in Fig. 7,
where it can be seen that state |a) is localized in the station-
ary optical lattice at p,=0 and state |c) is localized in the
traveling lattice at po=wy/2. The values of the three eigen-
values satisfy w;=é—€.=1.67227495 and w,=é ¢
=1.142 070 65. Therefore we seek simultaneous rational ap-
proximants (m,/mgy,m,/my) to the pair (0.270 579 771,
0.184 790 913). Performing a numerical exhaustive search,
we find that the integer vector m=(325,88,60) provides
detunings A;=-1.17X 107 and A,=-1.08X 1073, which
satisfy the required conditions of |A;[=O(\)<1 and
|A\—A,|<\. The unbarred eigenvalues in the zone
€' =—w/2=-wy/(2 X 325) are shown in Fig. 6(b). The detun-
ings A, and A, can be seen in the enlarged section of the
graph (inset), separating €, _¢, from €, , and €. _,,,, respec-
tively. The coefficients 7

0.4442
Uap= T B (52)
—-0.0673
Vpe= "5 (53)

are calculated using Egs. (49) and (50) after numerical di-
agonalization of I-AIIOp in H.

The adiabatic dynamics of the model system in Eq. (51)
and the full system in Eq. (29) are shown in Fig. 8, using the
same parametrization of the «; as in Eq. (28) and N=0.02.
Although good agreement is seen between the two, it is evi-
dent that the STIRAP transition between eigenstates |a) and
|c) is not achieved in either case. The reason for this failure
is a narrow avoided crossing at ' =—-2.5 between the eigen-
values of adiabatic states |1) and |3) [see inset of Fig. 8(a)],
which affects a transition between unperturbed states |a) and

013420-10
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FIG. 7. (Color online) The Husimi representations of three Floquet states of the two-resonance Hamiltonian [|q_52(t)),
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By(1)), and | ¢(1)),

clockwise from top left] viewed at time r=0. The parameter values are k=1 and wy=6.18.

|c) before the STIRAP transition. This type of avoided cross-
ing, reversing the effects of the desired transition, will al-
ways exist in the adiabatic limit when a matrix of the type
given in Eq. (36) is used for STIRAP evolution because of
the nondegeneracy of the eigenvalues of |a) and |c). Al-
though this model does allow for a broad STIRAP-type tran-
sition, the resulting change in character of the adiabatic state
[1) as ¢ passes from —o to % requires that its eigenvalue
change from 0 to A;—A,.

The problem in the adiabatic limit can be avoided in the
numerical or experimental achievement of a STIRAP transi-

tion in one of two ways. First, it is possible to achieve a
nonadiabatic evolution of the system which is slow enough
to guarantee a STIRAP transition, but rapid enough to pass
through problematic sharp avoided crossing via Landau-
Zener tunneling. Second, one can abandon time periodicity
and apply resonant coupling fields, reducing the model to the
classic form in Eq. (1). The efficacy of both methods can be
seen in Fig. 9(a), where time evolution of both the model
(see Appendix B) and the full Schrodinger equation yield a
STIRAP-like transition in the cases of resonant and detuned
coupling fields. As in the pendulum case, the resonant cou-
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FIG. 8. The adiabatic dynamics of the three-level model in Eq. (51) [(a) and (c)] and the three relevant states of the corresponding full
two-resonance Floquet system with wg=6.18 [(b) and (d)] for the example at xy=1. The perturbation amplitude functions & (') and x,(¢')
are the same as in Fig. 4(a), and A=0.02; model parameters are as determined in the text. The eigenvalues under the application of the
perturbation are shown in (a) and (b). The influence of «(¢') on the adiabatic eigenvalues is stronger than that of «,(t') because |v, |
>|vy, |- Overlaps of the |1) adiabatic eigenvector with the unperturbed states are shown in (c) and (d). The inset in (a) shows a sharp avoided
crossing which prohibits the STIRAP-like transition in the adiabatic limit. All plotted quantities are dimensionless functions of the dimen-

sionless parameter #’.

pling provides a faster approach to adiabaticity. The evolu-
tion of a state initially prepared in the stationary wave eigen-
state |a) is shown to pass into the traveling wave state |c)
under resonant coupling in Fig. 9(b).

Using the nondimensionalization presented at the end of
Appendix A, we can return to physical variables and deter-
mine the experimental conditions necessary for a STIRAP
transition of the type described here. Consider a system of
cold cesium atoms interacting with a system of lasers tuned
near the D, transition (as in Refs. [23,24]), yielding a recoil
frequency of w,~ 1.3 X 10* Hz. For the example considered
above, the traveling cosine wave is therefore generated by
counterpropagating lasers with frequencies offset by
Sw/2m=(4w,)wy/27m~=51 kHz; amplitude modulation fre-
quencies corresponding to €);/27 and ,/2 are 14 and
9.4 kHz, respectively. The relationship between dimension-

less time 7 and physical time 7, for this system is

t
-~ -5
Lohys = ro (2 X107 s)t.

s

(54)

Therefore, the near-100% transition between the stationary
and traveling lattices shown in Fig. 9(b) would require 1 s in
the laboratory. In this particular example, atoms acquire six

recoil momenta which for cesium atoms corresponds to a
velocity of 2 cm/s. A more rapid approach to adiabatic evo-
lution can be achieved by increasing the coupling strength A,
as long as the assumption of small perturbation (A < k) re-
mains valid. In numerical experiments, we were able to de-
crease the transfer time for the preceding example (with
resonant coupling) by a factor of 5, while maintaining 90%
efficiency, by setting A=0.1. Selection of a larger value of
Ko, 1.e., deeper wells in the optical lattice, would allow for a
larger value of N\ and shorter transfer times.

IV. CONCLUSIONS

We have demonstrated a method for the coherent transfer
of ultracold atoms from the well of a stationary optical lattice
into that of a traveling lattice. The effective Hamiltonian for
an atom in such a lattice, constructed by adiabatic elimina-
tion of the internal electronic structure, provides a system of
eigenstates which determine the center-of-mass dynamics of
the atom. We have shown that small, harmonic modulations
of the lattice amplitude can allow for a STIRAP-type sub-
system of the Schrodinger equation for this effective Hamil-
tonian, with which transitions between these eigenstates can
be induced.
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FIG. 9. (Color online) The numerical evolution of a state ini-
tially localized in the stationary cosine wave of the two-resonance
system [|<¢2(0)| #(0))]>=1], under the influence of STIRAP cou-
pling for the example described in the text. The probability of a
transition to any state other than |c) in time t=t,, is plotted versus
the width of the coupling fields o=0=0,=0.17,, (a). The coupling
strength was fixed at A=0.02 with maximum values of the two
fields for a particular realization occurring at 7;=0.67,, and 7,
=0.41,,. Evolution of the effective Schrodinger equation under reso-
nant coupling is plotted with squares and evolution under near-
resonant coupling (with A; and A, as shown in Fig. 6) is plotted
with triangles. Solid lines are the corresponding values predicted by
the numerical evolution of the three-state model. (b) shows the full
numerical evolution of the occupation probabilities for the case of
o=5100 and resonant coupling. A transition from the stationary to
traveling lattice is evident in the Husimi representation of the
evolved state (axes on inset figures, each taken at an integer mul-

tiple of the period T, are the same as in Fig. 7). The horizontal axes
of both plots are dimensionless time measured in units of i.
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APPENDIX A: EXPERIMENTAL CREATION OF THE
EFFECTIVE HAMILTONIAN

In this Appendix, we show how the effective Hamiltonian
in Eq. (4) can be used to describe an experimental system of
lasers impinging on noninteracting alkali atoms. This analy-
sis involves the consideration of a two-level subsystem of the
atom’s electronic levels, application of the rotating-wave ap-
proximation, and adiabatic elimination of the excited level,
to obtain a spatially and temporally periodic potential for
atoms in the ground state.

We begin by considering the Hamiltonian of this two-
level system, in dipole interaction with a z-polarized classical
electric field,

H=Hyom+ Hip, (A1)
with
p2
Hyom= ﬁwa,|e)<e| + z_x(|e><€| + |g><g )\ (A2)
m
and
Hip == dE,(x,1)(le)(g] + [g)e]), (A3)

where fiw,, is the energy spacing of the two levels, p, is the
atomic momentum operator in the x direction, and d

=(e|d.|g)=(g|d|e) is the dipole matrix element coupling the
ground state |g) to the excited state |e). The total electric field
amplitude E,(x,?) is assumed to be the superposition of the
electric fields due to N lasers, all polarized along the z direc-
tion, so that

N

. Sk ; Sw;

E.(x,1) = > EV cos[(kL+ —21>x+ O'j(wL+ —;oi>t+ qu] ,
=

(A4)

where EV) is the amplitude of the jth laser, w, is a positive
reference frequency, and k; its corresponding wave number,
o; can be 1, and &k;=dw;/c (the usefulness of this form
will be evident below). We can then write

E(x,t) = A(x,0)e™ L' + A*(x,1)e™L!, (A5)
with
EV . ok Sw,;
Alx,t) = ? - exp{— zaj[<kL+ zl)x+ Uj—21t+ @}},
(A6)

Under a time-dependent unitary transformation of the
Schrodinger equation, the Hamiltonian transforms like

; ou
H— UHU' + iﬁEUT. (A7)
Using the unitary matrix
U= expliogle)elr), (A8)

to transform to the rotating frame of the laser leaves the
Hamiltonian as
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2
H=hA|e)e| + 5—"(|6><6| +g)gl)
m

—dE (x,1)(|e)(g|e"“" + |g){e|e"L"), (A9)
where A=w,,—w, is the detuning of the reference laser fre-
quency from the atomic transition.

Let us now make the rotating wave approximation by in-
serting the form of E, in Eq. (A5) and neglecting terms with
high-frequency exponential dependence (i.e., e*>“L"). The
Hamiltonian then takes the form

2

H =hAle)e| + 5—*<|e><e| +le)g))
m

= d[A(x0)|e)(g| + A*(x,1)|g)e]]. (A10)

Writing an arbitrary state [i)=,(x,1)|g)+,.(x,1)|e), the
Schrodinger equation can be written

o wE
ih ot __2m(9x2{/,g_dA (x’t)l/fe’ (All)
2l w7
ih P ——dA(x,l)lﬂg+<ﬁA—2max2 ¢e~ (AIZ)

Adiabatic elimination of the excited state is performed by
assuming that the detuning of the laser A is large enough to
allow us to neglect the time and space derivatives of the
excited state. Thus, atoms prepared in the ground state will
remain there and we are left with an effective Hamiltonian
for their evolution,

Oy, P’ A (x,1)?
lﬁj= et Heff=;_T‘ (A13)

The particular form of A(x,7) will depend on the choice of
lasers. A pair of counterpropagating lasers with equal carrier
frequencies (EV=EX=E; dw,=6w,=0; oy=—0y; ¢;=¢,
=0) will produce a time-independent, periodic potential, i.e.,

E2
Agana(x,0) = E cos(kyx) — |Agana(x, 1) ~ By cos(2k;x),

(A14)

where we have neglected constant terms. Similarly, two
counterpropagating lasers with slightly offset frequencies
(EW=EP=E; $w,=-06w,=dw;, oy=—0y, ¢;=c,=0) will
produce a traveling periodic potential,

A 00,1) = g [ o Tkp+(Sk02) Je=(80/2)1} . e-i{[kL-(ﬁk/z)]x—(&u/z)t}}

B2
— A () [* ~ By cos(2k; x — dwr). (A15)

If we combine these two pairs of lasers, we create an
effective potential with the desired terms of Eq. (4), namely
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2 212

H= 5—’; - 5 3 leos(2k0) + cos(2kx - wn)]. (AL6)
It is clear, however, that the |A(x,7)|? for such a system will
also contain unwanted cross terms, which we have neglected
in writing Eq. (A16). In order to minimize the effect of these
cross terms, we offset the carrier frequency of the second
pair by some amount Aw (EV=E®=EP=EW=E; Su,
=0w,=0; Sw3=Aw+dw; Swy=Aw- 0w, 01=03=—0,=—0};
and ¢;=0V i), where w;>Aw> dw. This yields,

B2

|A pwores(X, 1) > ~ ?[cos(Zka) + cos(2k,x — Swt)

+ cos(Akx)cos(Awt) + cos(2k x)cos(Awt) ],
(A17)

where Ak=Aw/c and we have retained only the highest-
order terms in the frequencies and wave numbers (e.g., dw is
neglected in the presence of Aw). The last two terms in this
equation present high-frequency oscillations, depending on
the particular value of Aw. As a concrete example, we can
consider a system of cesium atoms. In Refs. [23,24], the laser
light was detuned by A~10'""Hz from the D, line
(w;,~ 10" Hz) and a modulation of dw~ 10° Hz was ap-
plied to the standing lattice to affect traveling terms in the
effective potential. Therefore, an offset of the carrier fre-
quency for the second pair of lasers in the hundreds of MHz
will satisfy A>Aw> dw, and allow one to safely neglect the
last two terms in the square brackets of Eq. (A17) [25].

In order to obtain the Hamiltonian in Eq. (4), we change

to dimensionless variables (p’, x’, t', »’ and H') as follows.

Py | 1
Let p’=2ﬁkL, x'=2k;x, t'=4w,t, “’,:4_0),5"” and H’=MH,

2
where the recoil frequency of an atom is w,= % The Hamil-
tonian in Eq. (A16) then takes the form

H' =(p')*+ k[cos(x’) +cos(x' —w't")],  (A18)
where KE—% Removing the primes, we obtain the de-

sired Hamiltonian. Dimensionless energies and Floquet ei-
genvalues will be measured in units of 4% w,. In these units,
the effective Planck’s constant is unity. It is important to note
that with this choice of dimensionless units, changes in mo-
mentum due to the interaction of an atom with the lasers are
integer valued. Moreover, experimental techniques allow for
the preparation of atoms in a very narrow range of momen-
tum values about zero [23,24,26]. Therefore, the eigenvalues
of the momentum operator will take only integer values, i.e.,
plny=n|n) with n € Z.

APPENDIX B: “EVOLUTION” OF A FLOQUET
HAMILTONIAN

In this Appendix, the (¢,7") formalism due to Peskin and
Moiseyev [27,28] is used to justify the time parametrization
of k; and k, in the model Hamiltonians in Egs. (24) and (51).
These models are each subsystems of a Floquet Hamiltonian
which was constructed under the assumptions that «; and «,
were constant and the Schrodinger equation was time peri-
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odic. The subsequent parametrization of such a system by
nonperiodic functions of time therefore requires a more rig-
orous explanation. Here, we show that a physical system
represented by a Hamiltonian with both periodic and arbi-
trary dependence on time, can be associated to Floquet-like
Hamiltonian in an extended Hilbert space where the periodic
time dependence has been reduced to dependence on a coor-
dinate. This Hamiltonian is termed “Floquet-like” because its
dependence on the coordinate time is identical to a Floquet
Hamiltonian’s dependence on time. The remaining arbitrary
time dependence of the Floquet-like Hamiltonian determines,
via the Schrodinger equation, a dynamics in the extended
space from which the dynamics of the original system can be
recovered.

Consider the Schrodinger equation for a time-dependent
Hamiltonian

0 N H Vo v
latlﬂ(x,t)—H(x,t)(ﬁ(x,t), (B1)

where x can be considered a single spatial coordinate or a set
of coordinates and 7 has been set to unity by nondimension-
alization of the variables. We will associate to H(x;f) a
Hamiltonian of one more coordinate Hp(x,t’;r) which is a
Hermitian operator in a larger Hilbert space, extended to
include this new coordinate ¢'. The relationship between the
two Hamiltonians is defined by

_ J
Hp(x,t";0) = H(x,t'51) - iy, (B2)
with
H (x,t" ;1) 12 = H(x;1). (B3)

Clearly, H(x;7) does not uniquely determine Hpg(x,?' ;7). The

time evolution of a state J(x,t’ ;1) in the extended space is
governed by the Schrédinger equation

Jd - _
i;ﬁ(x,t’;t) = Hp(x,t" 1) lx,t'31), (B4)
which can also be written

i[(g + &—j)zﬁ(x,t’;t)} =H(x,t";0(x,t" ;). (BS)

If we take this equation at the cut ¢'=¢, it becomes

io.%[lz (1”30 = Hoes ) (x50 2], (B6)

where we have used the identity
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d. = ’. — i i _x ’.
;t[w(x,t vt)|t’=t]_|:((9t+ at,)tﬂ( .t ,t)} (B7)

t'=t

Comparing Egs. (B6) and (B1), we see that the evolution of
a state in the original system can be determined by evolution
in the extended system using

lﬂ(x;l)= w(x’tl;t)lt'zn (B8)
and provided the same initial condition
t}(x,t’;t)|,r=,=0= lﬁ(x,()) (B9)

is used in each space.

We now apply this formalism to STIRAP transitions in
the two-resonance Hamiltonian. The evolution plotted in Fig.
9(b) was performed by numerical integration of the
Schrodinger equation, using the Hamiltonian

H(x;t)=— P + Kol cos x + cos(x — wyt) |
X

+ \ cos x| k;(1)cos(1) + ry(1)cos(Q,1)],
(B10)

where k; and k, were given Gaussian time dependence in
order to affect the STIRAP-like transition. The solid lines
plotted in Fig. 9(a), were determined by evolution of a
Schrodinger equation using the time-parametrized three-level
model in Eq. (51). Using the above analysis we can show
that, modulo the perturbation theory approximations, these
two methods of time-evolution are equivalent. We define a
Hamiltonian in the extended space

H(x,t' ;1) =- P + Kol cos x + cos(x — wyt")]

+ X\ cos x[ k,()cos(Q,1") + ry(t)cos(Qyt") ],
(B11)

which satisfies Eq. (B3) for the two-resonance Hamiltonian
and has the property that functions periodic in time are now
functions of the extra coordinate, while the amplitudes of the
modulations are functions of the usual time parameter. The
full Hamiltonian in the extended space Hp(x,t';t), defined
by Eq. (B2), has the same dependence on ¢ that the Floquet
Hamiltonian in Eq. (29) has on time z. Therefore, the entire
perturbation analysis performed on the Floquet Hamiltonian
in Sec. IIT would proceed in identical fashion on Hp(x,t’;1),
yielding a time-parametrized three-level model. If Egs. (B8)
and (B9) are satisfied, the “time-parametrized” Floquet
Hamiltonian can be used to determine the physical evolution.
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