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Strongly gravitating systems can undergo unusual orbital trajectories. For example, “extreme mass

ratio inspirals” (observable in the megahertz band by space-based gravitational wave detectors) can

exhibit “zoom-whirl” orbits, which make complicated waveforms that are useful for mapping out

the system’s gravitational structure. Zoom-whirl behavior can be intuitively understood in the

context of effective potentials, which should be familiar to students from classical orbital theory in

mechanics. Here, we explore zoom-whirl orbits using effective potential theory around

Schwarzschild black holes and present an interactive tool that can be used in pedagogical settings.
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https://doi.org/10.1119/5.0149655

I. INTRODUCTION

Traditional training in physics develops core paradigms
that underpin much of the discipline and are pedagogically
quite useful.1 Such paradigms are not only useful for solving
textbook problems, but also for understanding complex and
exotic behavior in physical systems. This paper illustrates
how effective potentials, typically introduced to students in
the context of classical mechanics and scattering theory, can
be utilized in gravitational wave astronomy to understand
“zoom-whirl” orbits. These orbits are expected to be com-
mon in extreme-mass-ratio-inspirals (EMRIs) of small com-
pact objects into supermassive black holes;2 the EMRI name
was coined by Glampedakis and Kennefick in 2002.3 Zoom-
whirl orbits have been actively studied over the past
20 years3–9 and will be a key source for the Laser
Interferometer Space Antenna (LISA), expected to launch in
the mid-2030s.4,10,11 When visualized, these orbits appear
random and unpredictable, but studies have shown their
behavior is not formally chaotic.12 EMRIs are valuable
observational sources, in part because zoom-whirl trajecto-
ries traverse much of the volume around the central massive
object. If such orbits can be reconstructed from their gravita-
tional wave signals, they provide a detailed map of the
spacetime around the black hole. This is completely analo-
gous to geodesy, the careful mapping of the gravitational
environment of the Earth from observations of satellite
trajectories.

As is common in general relativity, throughout the paper
we use geometrized units G ¼ c ¼ 1,13,14 where G is the
gravitational constant and c is the speed of light.15 To restore
G and c to any equation, multiply each quantity in the equa-
tion by a conversion factor:14 if the quantity has dimension
lengthl � timem �massn, it should be multiplied by a factor
of cmðG=c2Þn.

This paper is organized as follows: In Sec. II, we review
the basics of EMRIs and zoom-whirl orbits. Section III A
provides the effective potential framework for orbits around
a Schwarzschild black hole, while Secs. III B and III C apply
the effective potential theory to illustrate how zoom-whirl
orbits arise and analytically determine the number of whirls.
Then, in Sec. IV, we provide a brief overview of both the

production and detection of gravitational radiation. Section
V discusses an online visualization tool we developed. The
codes underlying this tool are publicly available on
GitHub,16 and the simulation tool itself can be used to output
plots and datasets like those displayed in this work. Finally,
in Sec. VI, we summarize our results and discuss the utility
of the theory and simulation tools for the undergraduate
classroom.

II. EXTREME MASS RATIO INSPIRALS

Newtonian gravity provides reasonable accuracy for most
calculations of solar system dynamics. However, precision
measurements, such as the observations of Mercury’s perihe-
lion precession, reveal that Newtonian gravity is simply the
weak field limit of the underlying theory of general relativ-
ity. Bertrand’s theorem states that the inverse square law and
Hooke’s law are the only central force laws that give rise to
closed orbits for all bound particles. As will be shown in
Sec. III, relativistic effects can be captured rigorously by
using an effective potential, which, according to Bertrand’s
theorem, cannot possess closed orbits.17 Thus, orbits in
Einstein’s theory of general relativity, even for planets in the
solar system, cannot be closed.

In the context of zoom-whirl orbits in extreme mass ratio
systems, the consequences of Bertrand’s theorem are even
more dramatic. Compact stellar remnants, such as neutron
stars or black holes of mass �10 M�, are expected to be cap-
tured by massive black holes of mass � 106 M� in the cen-
ters of galaxies.18 These orbits are expected to be highly
eccentric, where the light companion “zooms” outward to a
large radius before making a close encounter with the central
black hole. The perihelion of the orbit will precess during
the close encounter; under certain conditions, this precession
can be extreme, resulting in a “whirl” where the companion
makes many loops around the central mass before zooming
out to large radii again. Over time, the system loses energy
to gravitational radiation, causing the orbit to shrink and
become more and more circular until the compact body
plunges into the central black hole.

In astrophysical contexts, these central black holes are
expected to rotate and can be represented by the Kerr
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solution to Einstein’s equations. A three-dimensional simula-
tion of a zoom-whirl trajectory around a spinning (Kerr)
black hole is shown in Fig. 1. As we show here, this behavior
is actually not a consequence of the spin of the black hole;
instead, the zoom-whirl behavior is a feature of the effective
potential experienced by the orbiting object, and can occur
even if the central massive object is not rotating. To that end,
we will derive the zoom-whirl behavior from the equations
of motion for a test particle in the effective potential of a sta-
tionary Schwarzschild (spherical, non-spinning) black hole.

III. EFFECTIVE POTENTIALS

A. Comparison of Newtonian and Schwarzschild
effective potentials

From classical mechanics, the equation of motion of a par-
ticle (with mass m) in orbit around a massive body (with
mass M) has the following form:

m€r ¼ � d

dr
VðrÞ þ ‘2

2mr2

� �
(1)

(over-dots represent time derivatives). Here, ‘ ¼ mr2 _/ is the
angular momentum, a constant of the motion; the energy
(E ¼ 1=2 m _r2 þ VðrÞ þ ‘2=2mr2) is also a conserved quan-
tity. The term inside the parentheses in Eq. (1) is called the
“effective potential.” In Newtonian gravity, VðrÞ ¼ �Mm=r;
dividing both sides of Eq. (1) by the mass of the orbiting par-
ticle and defining ~‘ ¼ ‘=m; ~E ¼ E=m, and ~V ¼ V=m, we
have €r ¼ �d ~V eff;NewtðrÞ=dr, which defines the specific
Newtonian effective potential,

~V eff;NewtðrÞ ¼ �
M

r
þ

~‘
2

2r2
: (2)

In general relativity, one can derive an equation of motion
for a particle moving in the spacetime around a
Schwarzschild black hole and cast it in the same language of
effective potentials €r ¼ �d ~V eff;SchdðrÞ=dr. Energy and angu-
lar momentum are again conserved, but the specific effective
potential has an additional term,20

~V eff;Schd¼�
M

r
þ

~‘
2

2r2
�M~‘

2

r3
¼�M

r
þ

~‘
2

2r2
1�Rs

r

� �
; (3)

where Rs ¼ 2M is the Schwarzschild radius. The third term
scales like 1=r3; it is negligible at large radii, leading to
near-Newtonian behavior far from the black hole, but it

dominates at small radii near the central black hole. The
additional relativistic term creates a second extremum in the
potential, with a local maximum near the black hole (but out-
side the event horizon at Rs). Henceforth, we will suppress
the identifying subscript on the effective potential, and Veff

will mean the Schwarzschild effective potential. Both the
Newtonian and general relativistic potentials are illustrated
in Fig. 2.

The effective potential is useful for classifying types of
orbits: intersections of the constant orbital energy, ~E, with the
effective potential indicate orbital turning points, where _r ¼ 0
(in the general relativistic situation, time derivatives are taken
with respect to proper time, s). In the Schwarzschild case, how-
ever, the types of allowable orbits depend on the value of the
angular momentum. The situation for ~‘ > 4 M is shown sche-
matically in Fig. 3. A stable circular orbit exists for ~E equal to
the local minimum of the potential (similarly, there is an unsta-
ble circular orbit for ~E equal to the potential’s local maximum).
Bound orbits ( ~E < 0) have an inner turning point (periapsis, rp)
and an outer turning point (apoapsis, ra). When the particle
energy is exactly zero, the orbit is parabolic. When ~E > 0,
the orbit can be unbound (hyperbolic) or plunging
( ~E > max½Veff �). For angular momentum valuesffiffiffiffiffi

12
p

M < ~‘ < 4 M, the local maximum of the effective poten-
tial is below zero and no unbound orbits are allowed. For
~‘ <

ffiffiffiffiffi
12
p

M, the potential has no inner peak and thus no bound
orbits.*

B. Whirling in effective potentials

The whirling behavior prevalent in EMRIs can be under-
stood as a very strongly precessing orbit. To help build intui-
tion for this extreme case, it helps to first examine a more
familiar example from the solar system. The famous
“anomalous” perihelion advancement observed in Mercury’s
orbit cannot be explained by Newtonian gravity—explaining
this advance was one of the first proofs of Einstein’s the-
ory21—and it can be understood by comparing the
Newtonian and Schwarzschild effective potentials.

To see the origin of periapsis precession from the effective
potential, first note that the angular speed (u/ ¼ _/, the azi-
muthal component of the four-velocity) is

Fig. 1. A classic zoom-whirl trajectory generated by a three-dimensional

simulation of an object orbiting around a spinning black hole.19
Fig. 2. A comparison of the Newtonian effective potential and the

Schwarzschild effective potential for ~‘ ¼ 4 M. Note how the additional 1=r3

term in the Schwarzschild case dominates at small radii, creating a local

maximum.

*The condition ~‘ �
ffiffiffiffiffi
12
p

M for which the effective potential can support

bound orbits is found by requiring real solutions to dVeff=dr ¼ 0.
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u/ ¼
~‘

r2
; (4)

therefore, as r becomes smaller, u/ increases in accordance
with the conservation of angular momentum. As shown in
Fig. 2, the inner turning point in the Schwarzschild potential
is always at a smaller radius than that in the Newtonian
potential, meaning a higher angular speed as the particle
approaches the turning point, and the accumulation of more
orbital phase, resulting in the “anomalous advance” in the
periapsis on the next orbit.

The whirling behavior in extreme mass ratio systems can
also be understood from the unique shape of the Schwarzschild
effective potential. The radial kinetic energy is the difference
between the energy of the orbit, ~E, and the effective potential,
~V eff . Thus, _r changes rapidly when ~V eff changes rapidly, and _r
changes slowly when ~V eff changes slowly. As the particle
approaches an orbital turning point, _r ! 0.

Consider an orbiting particle whose energy ~E is only
slightly less than the Schwarzschild effective potential
energy at its local maximum (Fig. 4), such that the inner
turning point is very near the extremum of the potential.
When the particle is very close to the turning point, its radial
speed _r is very small but changing (relatively) slowly
because the slope of the potential is shallow. Since the radius
is approximately constant during the extended time the parti-
cle is in this region of the potential, u/ is approximately con-
stant and the phase D/ is rapidly accumulating—the particle
is “whirling.” Eventually, the particle reaches its turning
point, _r ¼ 0, and begins moving toward larger radii; u/

begins to decreases, and the accumulation of phase slows.
The whirling phase ends as the zoom phase of the orbit com-
mences again. The rapid precession of the whirling phase is
closely connected to the presence of a local maximum in the
potential.

C. Explicit calculation of whirliness

Conventionally, a complete orbital period is defined as the
time required to travel from periapsis to periapsis. For a
Newtonian orbit, the particle traverses an angle of / ¼ 2p
during that period. However, for fast-precessing orbits, the

advance in / can be more than 2p in the time between two
successive periapse passes.

Periapsis precession is most often reported as a rate of
change in the angular position; for instance, Mercury’s peri-
helion advance is 574 arcseconds/century. In the case of
zoom-whirl orbits, however, the precession is enormous in a
very short time—“whirling” refers to multiple circuits of the
black hole per periapsis approach—so it is more convenient
to define the “whirliness” of the orbit as

- ¼ D/
2p

; (5)

where D/ is the total accumulated angular phase between
successive periapsis passes, as viewed by an observer far
from the black hole. The normalization factor of 2p is the
expected accumulated phase in a Keplerian (closed) orbit,
and such an orbit has a whirliness - ¼ 1. The whirliness
associated with objects in the solar system is a miniscule cor-
rection to Kepler; for example, Mercury’s precession corre-
sponds to - � 1þ 10�6. For strongly precessing zoom-whirl
orbits, one can view the whirliness - as the number of loops
the particle makes around the black hole in one periapsis to
periapsis cycle (according to a distant observer).

The computation of the whirliness - is most easily accom-
plished by writing out the components of the particle 4-
velocity, ua,

ur ¼ _r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~E �

~‘
2

r2
þ 2M

r

s
(6)

and

u/ ¼
~‘

r2
: (7)

These equations can be used to either numerically evaluate
the whirliness, or to construct a mathematical transformation
that allows - to be written in closed form.

A useful analytic form of the whirliness can be found by
re-expressing _r and _/ in terms of new auxiliary parameters:
the relativistic eccentricity and relativistic semi-latus rectum.
This is a classic method appearing in the literature,2,22,23 and
a modern textbook implementation with extended discussion
can be found in Ref. 24, which we follow here.
Nonrelativistically, an ellipse’s semi-latus rectum is half the
length of the chord, which passes through a focus and is

Fig. 3. A schematic of the effective potential for a particle around a

Schwarzschild black hole with ~‘ > 4M, showing the energy regimes for var-

ious orbits: circular (where dVeff=dr ¼ 0), bound ( ~E < 0), parabolic

( ~E ¼ 0), unbound (0 < ~E < max½Veff �), and plunging ( ~E > max½Veff �). If ~‘
were below 4M, the local maximum of the effective potential would be

below zero, eliminating the region of unbound orbits. The horizontal axis is

in the log scale to show the full potential well.

Fig. 4. Magnified view near the local maximum of the effective potential

with ~‘ ¼ 3:85 M. The inner turning point of the orbiting particle (dot) occurs

where its orbital energy ( ~E ¼ �0:0185, dashed line) intersects the effective

potential.
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perpendicular to the major axis. For a fast-precessing orbit,
the relativistic counterparts of the semi-latus rectum and the
eccentricity are less straightforward to visualize geometri-
cally, but they are defined naturally in terms of periapsis, rp,
and apoapsis, ra. The relativistic semi-major axis is defined
as a ¼ ðrp þ raÞ=2, while the relativistic semi-latus rectum,
p, and the relativistic eccentricity, e, are together defined by

rp ¼
p

1þ e
; ra ¼

p

1� e
; (8)

where the relativistic eccentricity is e¼ 0 for a circular orbit
and 0 < e < 1 for a bound orbit, completely analogous to
the Keplerian case. Note that the above-mentioned expres-
sions imply that p ¼ að1� e2Þ.

Assuming a bound orbit, and using Eq. (3) for the effec-
tive potential, the cubic equation ~E � ~V eff; Schd ¼ 0 can be
factorized as kð1=r � 1=r0Þð1=r � 1=raÞð1=r � 1=rpÞ ¼ 0,
where k is a constant and r0 is the innermost crossing of the
potential function, where it is descending. Using Eq. (8), this
allows one to write the specific angular momentum and spe-
cific energy as24

~‘
2 ¼ Mp

1� 1

2
3þ e2ð ÞRs=p

; (9)

~E ¼ �M

2p
1� e2ð Þ 1� 2Rs=p

1� 1

2
3þ e2ð ÞRs=p

0
@

1
A; (10)

where Rs ¼ 2M is the Schwarzschild radius. Note that when
the semi-latus rectum is much larger than a Schwarzschild
radius ðp	 RsÞ, these equations give the Newtonian limit
for elliptical orbits ~‘ ¼

ffiffiffiffiffiffiffi
Mp
p

and ~E ¼ �ðM=2pÞð1� e2Þ.
To derive a closed form expression for the whirliness, -,

it is convenient to parameterize the orbit in terms of an angu-
lar parameter v, rather than the conventional azimuthal angle
/. This parameter has the value v¼ 0 at periapsis and v ¼ p
at apoapsis; it is related to / for circular orbits by

/ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3Rs=p

p v: (11)

This parameterization is convenient because it accounts for
the curvature of space near the black hole horizon. For non-
circular orbits at semi-latus rectum values far from the hori-
zon, v � /, giving the classic Keplerian result. For general
orbits, the relation between / and v can be found by starting
with the shape equation of the orbit,

rðvÞ ¼ p

1þ e cosðvÞ : (12)

As expected, far from the black hole, where v � /,
this gives the shape equation in Newtonian gravity,
rð/Þ ¼ p=ð1þ e cos /Þ. The whirliness can be evaluated by
finding d/=dv,

D/ ¼
ð

d/ ¼
ð2p

0

d/
dv

dv: (13)

Using the definitions of ~‘ and ~E, the difference between
the specific total mechanical energy and the specific potential
energy is

~E � ~V eff ¼
M

2p
e2 sin2v

1� ð3þ e cos vÞRs=p

1� 1

2
ð3þ e2ÞRs=p

0
@

1
A: (14)

From energy conservation, the total specific mechanical
energy is

1

2
_r2 þ ~V eff ¼ ~E: (15)

Solving this for _r ¼ dr=ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ~E � ~V effÞ

q
and using Eqs.

(4), (9), (12), and (14), yields

d/
dv
¼ d/

ds
ds
dr

dr

dv
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3þ e cos vð ÞRs=p
p : (16)

Substituting Eq. (16) in Eq. (13) allows for the computation
of the whirliness. The results are shown in Fig. 5. In the
Newtonian limit, we can Taylor expand in the small parame-
ter Rs=p to get

D/ ¼ 2pþ 6p
Rs

p

� �
þ 3p

2
ð18þ e2Þ Rs

p

� �2

þ 
 
 
 : (17)

Here, the leading term is the Keplerian result, and the differ-
ence between the leading term and the first order term is the
classic periapsis shift term for Schwarzschild.

We have discussed whirliness in the context of non-
circular orbits. However, examination of Eq. (17) shows that
the higher order terms in the expansion do not tend to zero
when the orbit becomes circular. What does it mean to have
a periapsis shift for a circular orbit? This is a question about
an effect that is not observable, since there is no fixed refer-
ence point to identify the periapsis of the circular orbit.

IV. GRAVITATIONAL WAVES

There is great interest in zoom-whirl orbits around mas-
sive black holes because these are prospective sources for

Fig. 5. The “whirliness” of an orbit—the angular distance a particle travels

from periapsis to periapsis, divided by 2p—as a function of the ratio of the

Schwarzschild radius to the apoapsis ra (rightward is the direction of

increasing apoapsis), for various values of the eccentricity. Note that there

are two factors that govern how an orbit’s angular distance deviates from

that of a Newtonian closed orbit. First, as eccentricity increases, the orbit’s

apoapsis more closely approaches the local maximum of the effective poten-

tial. Second, the whirliness is strongly affected by how closely ra approaches

the Schwarzschild radius.
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low-frequency gravitational wave observatories like LISA.
In the limit presented here, for a static background potential
and particle trajectories that are geodesic, it is straightfor-
ward to compute the gravitational waveforms generated by
these orbits.

The gravitational wave amplitude hTT
jk at time t and at a

distance d from the source can be found using the quadrupole
formula first derived by Einstein,25,26

hTT
jk ðt; dÞ ¼

2

d
€I€TT

jk ðt� dÞ; (18)

where t – d is the time of emission and where

ITT
jk ðtÞ ¼

ð
qðt;~xÞ xjxk �

1

3
j~xj2djk

� �
d3x (19)

is the transverse traceless quadrupole moment tensor, which
is related to the familiar moment of inertia tensor in classical
mechanics that characterizes the distribution of mass in a

system. Note: hTT
jk is dimensionless, so to restore non-

Fig. 6. A circular ring of test particles in the x-y plane (panel A). The proper

distance between particles in the ring is distorted, elongated along one

axis and compressed along the orthogonal axis, oscillating as a gravitational

wave propagates perpendicular to the plane of the ring. The dynamics

are shown for a þ polarized wave (panel B) and a � polarized wave

(panel C).

Fig. 7. The þ (top panel) and � (bottom panel) waveforms for a circular

(e¼ 0.0) orbit (~‘=M ¼ 3:7 and ~E ¼ �4:541� 10�2). In this and the follow-

ing figures, the data were exported directly from the online dashboard,16

assuming that the mass ratio of the orbiting particle to the central black hole

was m=M ¼ 10�5.

Fig. 8. The þ (top panel) and � (bottom panel) waveforms for an eccentric

(e¼ 0.9) orbit (~‘=M ¼ 3:98 and ~E ¼ �9:70� 10�3).

Fig. 9. The þ (top panel) and � (bottom panel) for an orbit with orbital energy

near the peak of the effective potential (~‘=M ¼ 3:7; ~E ¼ �3:445� 10�2). The

waveform clearly shows many oscillating peaks during the whirling phase, sepa-

rated by a slowly-changing, low-amplitude regime during the zoom phase.
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geometrized units to Eq. (18), we need only to multiply €I€TT

jk

by ð1=cÞ2ðG=c2Þ. Here, the coordinate positions xi ¼ xiðtÞ
refer to the spatial position along the orbit as the particle
moves in the effective potential, as a function of time. These
expressions for the gravitational waves can be evaluated in
our problem by replacing the density function with point par-
ticles of the appropriate mass, qðt;~xÞ ¼

P
a madð~x �~xaðtÞÞ.

In practice, the orbital trajectories ~xaðtÞ can only be writ-
ten down in closed form for circular orbits, where the solu-
tions are sinusoids; then, the time derivatives in Eq. (18) can
be evaluated analytically. In the case of integrated geodesic
trajectories around the black hole considered here, ~xaðtÞ will
generally be numerical solutions, with derivatives evaluated
numerically to give the gravitational waveform.

Gravitational waves are transverse waves with two distinct
polarization states, defined by the tidal distortion they produce
when passing through a region of space. Their effects are com-
monly envisioned as the time-dependent distortion of the proper
distance across a ring of test particles, as shown in Fig. 6. The
two polarization states are named “plus” (given by amplitude
hþ) and “cross” (given by amplitude h�) after the principle
axes along which the distortions occur.

For circular orbits, the gravitational waveforms are perfect
sinusoids, as shown in Fig. 7. As an orbit becomes more

eccentric, the gravitational waveforms deviate from sinusoi-
dal shapes, but remain periodic. Examples for orbits with
moderate eccentricities are shown in Fig. 8 (e¼ 0.9). The
waveforms have the largest amplitudes near periapsis, where
the sources are moving most rapidly and the gravitational
interactions are strongest (the source is “more relativistic”).

An extreme “zoom-whirl” orbit, of the sort EMRIs are
expected to have, where the eccentricity is high and the peri-
apsis is near the maximum in the effective potential, is
shown in Fig. 9. The amplitude is high and the structure is
complex, while the particle is in the whirling phase, moving
rapidly in close proximity to the central mass; when the par-
ticle zooms out to large distances, the gravitational wave
amplitude is comparatively tiny.

V. SIMULATION TOOL

To facilitate exploration of complex gravitational wave
sources like EMRIs, we have developed a simulation
“dashboard” that allows a user to define a Schwarzschild
geodesic orbit of interest by choosing either the orbital
parameters, e and rp, or the effective potential and energy,
through the constants of integration, ~‘ and ~E. The browser-
based dashboard is provided as an open-source python pack-
age that can be downloaded to run locally (available on

Fig. 10. A screencapture of the online “dashboard”16 in action, showing the trajectory of a zoom-whirl orbit (upper left), the particle in the effective potential

(upper right), and the corresponding gravitational waveforms (lower panels). The update of any parameter by the user immediately changes the simulation;

data and figures can be exported for download.
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GitHub16), and an online version is linked at ciera.northwes-
tern.edu/gallery/zoom-whirl.

The multi-panel dashboard (Fig. 10) displays a dynamical
view of the chosen orbit, including an effective potential
graph with the energy of the orbit and the particle’s current
radial location displayed; a birds-eye view of the orbital
trace; and the two gravitational waveform polarizations,
hþðsÞ and h�ðsÞ, as they are produced. By adjusting the
orbital parameters, a user can observe in real time how the
turning points of the orbits evolve on the potential, and see
the impact on both the orbital trajectory and the gravitational
waveforms.

VI. DISCUSSION

In this paper, we have outlined how the seemingly exotic
“zoom-whirl” behavior of EMRIs can be understood in the
context of the effective potential in which the particle moves.
In the case of orbits in a Schwarzschild effective potential,
conventional circular and elliptical orbits, familiar from
Newtonian theory, can be found near the local minimum of
the effective potential. However, due to an additional term in
the Schwarzschild effective potential, these orbits exhibit the
relativistic signature of precession, familiar from Einstein’s
explanation of the slight “anomalous” perihelion precession
of Mercury. For orbits whose inner turning point is very near
the local maximum of the effective potential, however, the
precession becomes extreme, giving the “whirling” behavior
of EMRI orbits. We have provided explicit formulas to cal-
culate the “whirliness” of an orbit, along with representative
results.

We have captured these principles in an open-source
python-based simulation tool that can either be run locally or
online using our publicly accessible version. Pedagogically,
it illustrates the utility of effective potentials for understand-
ing orbital motion in a dynamic, interactive way and allows
users to explore how traditional elliptical orbits are a part of
a continuous family that also includes the “exotic” zoom-
whirl orbits from gravitational wave astronomy. The tool
shows, in real time, how the effective potential impacts parti-
cle motion and gravitational waveforms and also serves as a
kind of numerical laboratory for students. We imagine it can
be used for demonstration in lecture presentations, but could
also be useful as a foundation for exploratory homework
problems or laboratory exercises in physics and astronomy
courses.
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