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ABSTRACT

We use unpublished and published VLBI results to investigate the geometry and the statistical properties
of the velocity field traced by H2O masers in five galactic regions of star formation: Sgr B2(M), W49N,
W51(MAIN), W51N, and W3(OH). In all sources the angular distribution of the H2O hot spots demon-
strates approximate self-similarity (fractality) over almost 4 orders of magnitude in scale, with the calculated
fractal dimension d between �0.2 and 1.0. In all sources, the lower order structure functions for the line-of-
sight component of the velocity field are satisfactorily approximated by power laws, with the exponents near
their classic Kolmogorov values for high Reynolds number incompressible turbulence. These two facts, as
well as the observed significant excess of large deviations of the two-point velocity increments from their
mean values, strongly suggest that the H2O masers in regions of star formation trace turbulence. We propose
a new conceptual model of these masers in which maser hot spots originate at the sites of ultimate dissipation
of highly supersonic turbulence produced in the ambient gas by the intensive gas outflow from a newly born
star. Because of the high brightness and small angular sizes of masing hot spots and the possibility of measur-
ing their positions and velocities with high precision, they become a unique probe of supersonic turbulence.

Subject headings: ISM: jets and outflows — masers — turbulence

1. INTRODUCTION

The idea of an energy cascade through a hierarchy of
scales (Richardson 1922; Kolmogorov 1941a; Obukhov
1941), the phenomenological theory of turbulent energy dis-
sipation (Kolmogorov 1941b, 1941c), and the experimental
and theoretical results related to the intermittency of turbu-
lent velocity fields (see Frisch 1995 for references) are the
cornerstones of the present understanding of incompressible
turbulence. Much less is known about compressible (super-
sonic) turbulence. Analytical approaches and laboratory
experiments are still limited to low Mach numbers, M � 1,
and the results of numerical simulations may depend
crucially on the adopted boundary and initial conditions.

Von Weizsäcker (1951) was the first to point out that the
interstellar medium (ISM) is characterized by very high
Reynolds numbers and high Mach numbers, and thus
highly supersonic turbulence should be its typical state.
Much work using the ISM to study supersonic turbulence
has since been attempted (see, e.g., Dickman 1985; Scalo
1987; Falgarone & Phillips 1990; Elmegreen 1993; Franco &
Carraminana 1999). However, at the relatively large scales
considered so far, 1021–1017 cm, the ISM may not be an
adequate laboratory for studying supersonic turbulence in
the traditional sense of the term ‘‘ turbulence.’’ The initially
hypothesized turbulent energy cascade from the largest to
the smallest scales of the ISM, initiated by the differential

rotation of the Galaxy (von Weizsäcker 1951; Fleck 1981),
is an obvious idealization. Even if the differential rotation
works as the major energy source for the observed turbu-
lence in the neutral gas at the periphery of galaxies (Sell-
wood & Balbus 1999), it should be disrupted by the
powerful injection of energy from supernovae and stellar
winds at intermediate scales in the major galactic disk
(Spitzer 1978). ISM turbulence at large and intermediate
scales is also complicated by the effects of self-gravitation.

It has recently been recognized that the 1.35 cm wave-
length H2O masers (see reviews on masers in Elitzur 1992;
Clegg & Nedoluha 1993; Migenes & Reid 2002) may be
promising tools for the study of ‘‘Kolmogorov-type ’’
supersonic turbulence. VLBI studies of the proper motions
of several bright H2O maser sources associated with newly
born stars have revealed expansion of the clusters of maser
spots, participating in gas outflows from these stars (see
Anderson & Genzel 1993 for a review). This type of regular
motion had been theoretically predicted before its discovery
(Strelnitski & Sunyaev 1973). In some cases, including
W49N, there are also indications of another regular compo-
nent in the velocity field revealed by the masers: rotation
(Reid et al. 1988; Gwinn, Moran, & Reid 1992). However,
besides these regular components, VLBI measurements
indicated the presence of a residual random component of
motion. Typically, approximating the proper motion vec-
tors by a simple model of expanding and rotating gas leaves
a residual dispersion of �15 km s�1 per axis, which is con-
siderably larger than the errors of these observations (Reid
et al. 1988). This value corresponds to �

ffiffiffi
3

p
� 15 � 26 km

s�1 for the total velocity vector and can be considered the
characteristic turbulent velocity dispersion at the largest
spatial scale covered by the maser cluster.

Walker (1984), using the VLBI maps of the H2O source in
W49N obtained by Walker, Matsakis, & Garcia-Barreto
(1982), demonstrated that both the two-point velocity incre-
ments and the two-point spatial correlation function show
power-law dependencies on maser spot separation. This
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behavior is typical of a turbulent flow, although Walker did
not favor the turbulence interpretation. Gwinn (1994) car-
ried out a similar statistical analysis using better VLBI
results for W49N obtained by Gwinn et al. (1992). He con-
firmed the power-law dependency of velocity dispersion and
spatial density of masing spots on spatial scale and ascribed
this behavior to turbulence.

This paper summarizes a series of our studies of H2O
masers as tracers of supersonic turbulence in regions of star
formation. Preliminary results were reported by Strelnintski
et al. (1998), Holder & Strelnitski (1997), Gezari (1997), and
Gezari, Reid, & Strelnitski (1998). In x 2 we present our
VLBI results for the H2O maser source in Sgr B2(M). The
geometrical properties of supersonic turbulence revealed by
H2O masers in this and four other sources are presented in
x 3, and the statistical properties of the velocity field traced
by the masers are given in x 4. In x 5, proceeding from the
hypothesis that the H2O masers adequately probe the veloc-
ity field of turbulence, we discuss implications of our statis-
tical results for the theory of supersonic turbulence. In x 6
we describe a new conceptual model of H2O masers in
regions of star formation based on the surmised connection
of maser pumping with the sites of ultimate dissipation of
turbulent energy. Conclusions are summarized in x 7.

2. VLBI OBSERVATIONS OF Sgr B2(M)

The observations of Sgr B2(M) were conducted on 1986
January 23, February 26, March 27, and April 26 as part of
a campaign to measure proper motions of these H2O
masers. Four telescopes spanning the US were used: the
Haystack 37 m telescope in Westford, Massachusetts; the
National Radio Astronomy Observatory9 (NRAO) 43 m
telescope in Green Bank, West Virginia; one 25 m telescope
of the Very Large Array (VLA) near Socorro, NewMexico;
and the Owens Valley Radio Observatory (OVRO) 40 m
telescope in Big Pine, California. The Mk III recording sys-
tem was used with four 2 MHz bands covering the LSR
velocity ranges of �40 to �14, 18–43, 43–69, and 68–94 km
s�1, assuming a rest frequency of 22235.08 MHz for the
H2O 616–523 transition. The recorded data were correlated
at the Mk III processor at Haystack Observatory in a mode
that yielded 56 (uniformly weighted) spectral channels, each
35.71 kHz or 0.48 km s�1 wide.

The data were edited, calibrated, and imaged following
the same general procedures as described in Reid et al.
(1988) for the source Sgr B2(N). The synthesized interfer-
ometer beam was approximately 2:4� 0:4 mas FWHM,
elongated in the north-south direction, owing to the low
declination of Sgr B2. Compact maser spots with flux den-
sities ranging between 135 and 0.4 Jy were detected across a
field of approximately 200 � 200. The positions of the maser
spots were obtained by fitting a circular Gaussian brightness
model for each spectral channel independently using the
AIPS task IMFIT.

3. THE GEOMETRY OF H2O MASERS

Figure 1 shows a series of decreasing spatial scales for our
VLBI map of Sgr B2(M). The scale changes by almost 4
orders of magnitude (from e100 down to d1 mas), which,

at the assumed distance of 8 kpc (Reid 1993), corresponds
to a range of linear scales between, roughly, 10,000 and
1 AU. As is typical of fractal dust–like structures, the distri-
bution of masers looks qualitatively the same on all scales,
with evident clustering.

On all maps of Figure 1, except the last one, dot sizes are
larger than the typical observed size of an individual maser
spot. Dots on the last map showmeasured positions of spec-
tral channels. Since a spectral channel (0.48 km s�1) is nar-
rower than a typical spectral width of a single spot (e0.8
km s�1), a dot on the last map typically represents the posi-
tion and velocity of only a part of an individual spot.We call
the smallest groupings of heavily blended individual spots
‘‘minimal clusters.’’ The dots on the map only approximate
the extension of and the velocity dispersion in these minimal
clusters. Inspectionof the available data indicates that a typi-
cal size of a minimal cluster is a few AU. The velocity disper-
sion within minimal clusters varies from�1 to 5 km s�1.

We used two methods to estimate the fractal dimension
of the spatial distribution of H2O masers in Sgr B2(M): the
‘‘ density-radius ’’ and the ‘‘ box-counting ’’ methods (see,
e.g., Crownover 1995; Feder 1988). The density-radius
measure is based on the generalization of the mass versus
radius relation for objects of integer dimension,

M / rd ; ð1Þ

where d is the dimension of the object. Equation (1) can be
used as a general definition of the dimension of an object,
including objects whose average density changes in a self-
similar way with changing scale (e.g., Mandelbrot 1982).
For these objects (fractals) d is noninteger. Average density
�within a given volumeV isM/V. Therefore,

� ¼ M

V
/ rd

rd0
¼ rd�d0 ; ð2Þ9 NRAO is a facility of the National Science Foundation, operated

under cooperative agreement by the AssociatedUniversities, Inc.

Fig. 1.—Multiscale VLBI maps of H2O maser source in Sgr B2(M) as
observed on 1986 January 23. On all maps except the last one, dot sizes are
larger than maser spot sizes. On the last map, dots are smaller than
observed maser spot sizes (�1 AU, which is perhaps affected by interstellar
scattering). The dots on the last map show measured positions of spectral
channels whose radial velocities are indicated near the dots.
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where d0 is the dimension of the supporting space, e.g.,
d0 ¼ 2 for a plane. If the dimension of the object equals the
dimension of the support, � equals a constant. If not, � is a
function of r. The steepness of this function depends on d.

A more practical procedure results from differentiating
equation (1), which gives

� � dM

dV
/ rd�d0 ; ð3Þ

or

d ¼ dðlog �Þ
dðlog rÞ þ d0 : ð4Þ

Determining the dimension is thus reduced to measuring the
slope of log � versus log r. In the case of a point set like ours,
‘‘ density ’’ means ‘‘ number density.’’

In our numerical procedure, � is calculated (for a discrete
set of r-values) as the surface density of companions to a
given maser hot spot at angular separation r, averaged over
all maser spots:

�ðrÞ ¼ number of pointsðr; rþ �rÞh i
�½2r�rþ ð�rÞ2�

: ð5Þ

The same procedure was used by Walker (1984) and Gwinn
(1994) for demonstrating self-similar clustering of H2O
masers in W49N. However, these authors did not relate �(r)
to the fractal dimension of the source. Larson (1995) uses a
similar procedure to obtain a fractal dimension for a young
stellar association in Taurus.

We tested our numerical procedure by obtaining the den-
sity-radius fractal measure of a simple straight line and of
the classical mathematical fractal, a Sierpinski triangle. The
measured dimensions of 1.00 and 1.58 were in excellent
agreement with their theoretical values d ¼ 1:000 and
�1.585, respectively.

The box-counting measure associates a fractal object’s
dimension d with the number N of boxes of side length l
needed to cover the object (Crownover 1995):

NðlÞ / l�d : ð6Þ

The graph of logNðlÞ versus log l is a straight line, having
slope �d. We used the following computational algorithm.
The square plane of minimal side length L containing the
whole object is divided into 22 equal squares of side length
L/2. The number of these squares containing one or more
points making up the object is determined and stored. Each
nonempty square of side length L/2 is subdivided again into
four squares of equal area; the number of nonempty squares
of side length L/4 is determined and stored, etc. The proce-
dure is repeated down to some minimal side length of sub-
squares; minimal side length is determined by the
characteristic length of the smallest features of the object.
The logarithm of the number of nonempty squares versus
logarithm of their side length is plotted, and the slope of the
straight line fitting the data points is measured; this slope is
equal to �d. This numerical procedure was also tested with
a straight line and a Sierpinski triangle. The measured
values of dimension were again in agreement with the
theoretical values.

We used equation (4) to determine the fractal dimension
of the two-dimensional projected (d0 ¼ 2) H2O masers in
the four observations of Sgr B2(M). The values of the fractal

dimension for the four observations and for their average
are indicated in the corresponding panels of Figure 2. The
average value is d2 � 0:44� 0:07. The box-counting result
for the average of the four observations is shown in
Figure 3. The ensuing fractal dimension, d2 � 0:21� 0:02,
is noticeably lower than that obtained from the density-
radius plot.

For both measures, a single linear fit is a satisfactory first
approximation; the standard deviation of the residuals to
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Fig. 2.—Density-radius fractal measure for H2O maser source in Sgr
B2(M) for (a)–(d ) the four epochs of observation and (e) their average. The
solid straight line shows a linear fit to the data points (open circles).
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the fit does not surpass �10% for each epoch of observa-
tions and for the combined fit. However, notable deviations
from a single power-law approximation can be seen in
Figures 2 and 3. For example, a higher fractal dimension for
the largest scales is evidenced by the steeping slope of the
points in Figure 3. Some deviation from the linear depend-
ence is seen in Figure 2, between logðseparationÞ � �2 and
�3. It may indicate some depression of clustering at the
scales around 0>003 (�1014 cm for this source).

The origin of the systematic difference between the two
applied fractal measures is unclear. It may be rooted in tech-
nical particularities of the methods. Some practical prob-
lems in the application of the box-counting method are
discussed in Gouyet (1996, x 1.4.4). This discussion indicates
that derived fractal dimensions should be correct within a
factor of 2. Given this uncertainty and the range of the
derived values of slopes in Figures 2 and 3, we estimate the
fractal dimension of the observed cluster as d2 � 0:3� 0:2.

Gwinn (1994) performed a statistical analysis of the VLBI
maps of W49/H2O obtained by Gwinn et al. (1992). He
demonstrated a power-law dependence of the number den-
sity of neighbors on their separation. However, he used the
one-dimensional projection of the distance and did not
interpret his results in terms of fractals. To make results for
W49N comparable to those for Sgr B2(M), we applied the
density-radius fractal measure to the two-dimensional spa-
tial distribution of the H2O maser spots in W49N, using the
VLBI positions published by Gwinn et al. (1992). We have

applied this measure to three more sources: two with
published VLBI results, W51(MAIN) andW51N (Genzel et
al. 1981; Schneps et al. 1981), and one source, W3(OH), for
which we used our unpublished VLBI coordinates of the
maser spots (the corresponding map of the source was pub-
lished; Alcolea et al. 1992).

The results for all sources are shown in Figure 4. A
power-law dependence is a good approximation for all of
them, and it gives a low fractal dimension, d1, for all the
observed sets of maser spots as projected on the sky.

Given the small angular dimensions of maser clusters
(�100), their projection on the sky is essentially an ortho-
gonal projection. Therefore, the dimension d3 of the real
fractal, residing in three-dimensional space, coincides with
the dimension, d2, of its two-dimensional projection if
d3 ¼ d2 < 2 (e.g., Falconer 1990). We have demonstrated
above that this condition is fulfilled for H2O masers. Thus,
we conclude that the fractal dimension of H2O clusters in all
five of the sources we have studied is low, d3d1.

This conclusion is new, although Walker (1984) and
Gwinn (1994) obtained results that can be converted to esti-
mates of fractal dimension. Walker (1984) obtained a high
negative value of the power index (approximately �1.1) in
the power-law approximation of the density-radius depend-
ence for W49N/H2O. This corresponds to a fractal dimen-
sion d3 ¼ d2 � 0:9. Gwinn (1994) reduced his two-point
correlation analysis of H2O masers in W49N to the one-
dimensional projection of the observed map on the x-axis.

Fig. 4.—Density-radius fractal measure for the H2O maser sources in W49N, W51(MAIN), W51N, and W3(OH). [Note in proof.—The x-axis unit for
W51MAIN andW51N is milliarcsec, not acrsec.]

No. 2, 2002 H2O MASERS AND SUPERSONIC TURBULENCE 1183



He obtained a power index, �1 � �ð0:2 0:3Þ, for a large
interval of scales. Although he did not connect this result
with a fractal dimension, we note that for a one-dimensional
projected fractal, d1 ¼ �1 þ 1, where d1 is the fractal dimen-
sion of the one-dimensional projection of the real fractal
residing in three-dimensional space. Thus, Gwinn’s result
corresponds to d1 � 0:7 0:8. Since d1 < 1, the same fractal
dimension is ascribed to both the two-dimensional projec-
tion and the real fractal residing in three-dimensional space.
Thus, both the Walker (1984) and Gwinn (1994) results
support our conclusion that the fractal dimension of H2O
clusters isd1.

To better appreciate the fractal distribution of H2O
masers, it is instructive to compare it with models of homo-
geneously distributed random points. In our numerical
model we created 90 points randomly and uniformly distri-
buted in a thin spherical shell and then projected this
distribution onto a plane. A drastic difference between the
model distribution and the observed maser distribution can
be seen visually (a lack of clustering in the model distribu-
tion) and is confirmed by the measured spatial dimension of
the model point sets. As anticipated, both box-counting and
density-radius methods gave d � 2 for the random, homo-
geneous cluster of model dots, to be compared with dd1
for the observed clusters of maser spots.

Other types of masers should also be tested for possible
fractal structure. At least some of them do not seem to have
such structure. For example, the OHmasers associated with
regions of star formation do not show self-similar spatial
distribution; rather, they demonstrate strong clustering on

one scale, �1015 cm (Reid et al. 1980). These masers form
just outside an expanding ultracompact H ii region and
would not be expected to have a turbulent structure of the
same kind as the H2O masers that are due to the shear
between a stellar wind and surrounding gas (see x 6).

4. STATISTICS OF THE VELOCITY FIELD

We investigated two statistical properties of the velocity
field traced by H2O masers in the same five sources: (1) the
low-order two-point velocity structure functions and (2) the
probability distribution for the deviations of the two-point
velocity increment from its mean value at different spatial
scales.

4.1. Two-Point Velocity Structure Functions

Most statistical studies of the kinematics and structure of
interstellar gas using masers as probes have so far been lim-
ited to one velocity component (the line of sight) and two
coordinates on the celestial sphere. Owing to the smallness
of maser sources (a whole source is only �100 across), the
two spherical celestial coordinates are, with high precision,
approximated by rectangular Cartesian coordinates. We
assume, as all previous authors implicitly did, that if a
power-law scaling relation exists for velocity vectors in
three-dimensional space, the same relation, with the same
exponent, holds for the dependence of the line-of-sight com-
ponent of velocity on projected distances. This is a reason-
able assumption if the velocity field is isotropic. It is
analogous to the well-known use of the longitudinal velocity
component in incompressible turbulence studies (see, e.g.,
Frisch 1995).

Statistical analysis of the velocity field probed by H2O
masers has previously been performed for W49N on two
independent sets of data (Walker 1984; Gwinn 1994). We
discuss here only the low-velocity H2Omaser spots (approx-
imately �20 km s�1 from the systemic velocity), which are
more likely connected with the ‘‘Kolmogorov-type ’’ super-
sonic turbulence than the high-velocity spots (x 6). Walker
(1984) did not see an explicit dependence of two-point veloc-
ity increments on point separation for low-velocity features,
shown in his Figure 8. One can interpret this graph as a
power law with the exponent qd0:2. Gwinn (1994) found
q � 0:33� 0:01 for the dependence of the median velocity
differences on the one-dimensional projection of the maser
pair separation. One can conclude from these two studies
that the value of q for the two-point correlation function in
W49N/H2O does not surpass 1

3.
For each of the five H2O sources (x 3) we calculated the

structure functions

D�ðlÞ � vðrÞ � vðrþ lÞj j�h i ð7Þ
for low values of the order of the function, � ¼ 1 3. In
equation (7) the vectors r and l determine the positions of
the two points in the plane of the sky, while v designates the
line-of-sight velocity and l the two-dimensional projection
of the linear distance between the points. Our calculation
procedure is as follows. The whole range of maser spot
angular separations (up to 4 orders of magnitude, in both
sources) is divided intoN bins, with logarithmically increas-
ing bin size and thus logarithmically increasing separation
between bin centers. Using the VLBI relative position data,
the procedure selects all pairs within a given separation bin
and calculates one of the functions (eq. [7]). This procedure
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1184 STRELNITSKI ET AL. Vol. 581



is repeated for every separation bin, and the resultant aver-
ages of the powers of velocity differences are plotted as a
function of separation in a log-log graph. A least-squares
fit of a straight line to the points on the graph is then
performed to obtain a power-law exponent q and its
uncertainty (1 �).

Figure 5 gives the results for Sgr B2(M), for � ¼ 1. The
figure shows the results for the four epochs of observations

(x 2), as well as their average. The data are satisfactorily
approximated by a power law. We obtain q ¼ 0:31� 0:03
when the whole set of data is used. When data for the largest
scales (log D� ðarcsecÞj j � �0:5) are excluded (to avoid pos-
sible edge effects), the value of q changes insignificantly:
q ¼ 0:34� 0:03. The second- and third-order structure
functions have the exponents of 0:62� 0:06 and
0:93� 0:09, respectively. We note that for all three structure
functions the power-law exponents are close to their classic
Kolmogorov values, which are 1

3,
2
3, and 1.0 for � ¼ 1, 2, and

3, respectively.
The results for � ¼ 1 for other sources are presented in

Figure 6. The power-law approximation gives the values of
q close to 1

3 for all the sources exceptW3(OH), where it is sig-
nificantly lower (0:19� 0:03). In this source, however, the
VLBI map reveals a strong regular component of motion
(strongly collimated bipolar outflow), which should signifi-
cantly influence the results when the whole VLBI map is
considered for the statistical analysis. To decrease the influ-
ence of the regular velocity component, we obtained the
first-order structure function for only one of the two lobes
of the bipolar outflow. In this case, the regular component
of the relative velocities should be minimal, and one can
anticipate that the bulk of the relative motions of the con-
densations will be due to turbulence. The result is shown in
Figure 7; the value of q (0.30 � 0.07) is now much closer to
the Kolmogorov value.

With all sources displaying the low-order structure func-
tions close to Kolmogorov’s, one might wonder how likely

Fig. 6.—Two-point line-of-sight velocity correlation function for H2Omasers inW49N,W51N,W51MAIN, andW3(OH)

Fig. 7.—Two-point line-of-sight velocity correlation function for H2O
masers in one of the two ‘‘ clusters ’’ (streams of bipolar outflow) in
W3(OH).
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it is that this is simply coincidental. Can regular, non-
turbulent velocity fields, such as expansion and/or rotation,
produce the observed power-law dependence of the velocity
increments on spatial scales, with the power index close to 1

3?
In order to answer this question, we applied the same stat-

istical analysis to the results of numerical modeling that
simulated regular motions of the maser spots only. A total
of 90 model dots were randomly and uniformly distributed
in a thin spherical shell. Three types of regular motion were
considered: (1) radial expansion, (2) rotation around an axis
perpendicular to the line of sight, and (3) expansion plus
rotation. In the last case we varied the ratio of the absolute
values of the expansion velocity and the velocity of rotation
on the equator.

The results of the line-of-sight velocity versus dot separa-
tion correlation analysis are shown in Figure 8. The long
straight line on the plots shows the slope 1

3 for reference. The
quickly growing dispersion of the data points at smaller
scales, seen on all the plots, is due to the uniform, nonfractal
distribution of the points: a lack of clustering, and thus poor
statistics, at smaller scales. This large dispersion makes a lin-
ear fit beyond about 1.5 orders of magnitude from the larg-
est scale meaningless. The slope of the fitting line, drawn in
this limited interval, changes from about zero for the case of
pure expansion (�0:08� 0:02, for the specific realization
shown in Fig. 8) to approximately unity for the case of pure
rotation (1:01� 0:01 in the example shown). All intermedi-
ate values of the slope can be achieved by combining expan-
sion and rotation in a due proportion ( four lower panels). In
particular, the ‘‘ Kolmogorov ’’ value 1

3 is achieved when the
ratio of the velocity of rotation on the equator to the
velocity of expansion is�3.

It is quite improbable, however, that this ad hoc combina-
tion of kinematic parameters plus the same orientation of
the axis of rotation is realized in all the sources under study.
In all the published models of the observed proper motions
and radial velocities of H2Omasers the deduced model ratio
of the expansion to rotation velocities is greater than 1. In
W49N these velocities are almost equal: 17 and 16 km s�1,
respectively (we consider here only the low-velocity compo-
nent of expansion; see x 6). It is seen from Figure 8 that such
a high ratio of expansion to rotation should produce a flat-
ter slope than 1

3 at large scales. It is noteworthy that flatten-
ing of the slope of the two-point correlation function does
indeed appear at larger scales for all the sources in Figure 6.
This reveals the contamination of the statistical properties
of the turbulent component of motion by the regular com-
ponent. The role of the regular component(s) of the velocity
field relative to the turbulent component drops with the
decreasing spatial scale, and it is remarkable how effectively
the smaller scales ‘‘ compensate ’’ for the flattening at the
larger scales in Figure 6 and force the average slope to tend
to its Kolmogorov value.

4.2. Statistics of Deviations from the
Mean Velocity Increment

An inherent manifestation of terrestrial turbulent flows is
intermittency, i.e., the spatial and temporal inhomogeneity
of the velocity field. Intermittency results in enhanced,
higher than Gaussian, probability of large deviations of the
two-point velocity increments from their average value at a
given spatial scale. Deviations from a Gaussian distribution
have been observed in laboratory and atmospheric incom-

pressible turbulent flows (Dutton & Deaven 1969; van Atta
& Park 1972). Falgarone & Phillips (1990) and Falgarone,
Phillips, & Walker (1991) attributed the broad (broader
than Gaussian) wings of the emission-line profiles observed
in molecular clouds to an excess of large deviations from the
average velocity difference in the cloud.

H2O masers are more direct probes of the velocity field
than thermal molecular lines observed in the cold clouds
(see x 6). Typically, the available VLBI results provide coor-
dinates and line-of-sight velocities for n � 100 maser spots
per observation. Thus, there are m ¼ nðn� 1Þ=2 � 5000
unique pairings for measuring the velocity difference distri-
bution. Given this relatively large number, we hoped that
the statistics were sufficient to identify possible deviations
from a Gaussian distribution at various spatial scales. Fig-
ures 9 and 10 show examples of velocity difference probabil-
ity distributions obtained for particular spatial ranges in Sgr
B2(M). The range for a given spatial scale was chosen to be
equal to the scale. Unfortunately, some individual distribu-
tions were found to be not well-defined, centrally peaked
distributions, which is evidently due to insufficient statistics.

In order to produce a more statistically significant result,
we attempted to co-add the individual distributions. The
summation was done as follows. The velocity difference (x-
axis) and the number of pairs or counts (y-axis) of the indi-
vidual distributions were independently normalized. The y-
axis was normalized by dividing all bin counts by the maxi-
mum bin count. In order to normalize the x-axis, we first
considered how the absolute value of the maximum velocity
difference of individual distributions scaled as a function of
radial separation between maser pairs. We found that this
function was well approximated by a power law. The best-
fitting straight line gave the exponent �1

3. Given the previ-
ously established Kolmogorov scaling law for the mean
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absolute velocity differences between maser points, this
result could be anticipated if we assume that the dispersion
of velocity differences at a given scale is proportional to the
mean absolute velocity difference at that scale. Using the
resulting linear fit, the dispersions of velocity differences for
individual distributions were normalized by multiplying the
x-values of a distribution by the ratio Dv0max=Dv

l
max, where

Dv0max is arbitrarily chosen to equal the maximum observed
absolute value of the velocity difference occurring in the cen-
tral spatial bin and Dvlmax is the maximum absolute velocity
difference value of an individual distribution. Once the x-
and y-axes of the individual distributions were normalized,
these distributions were co-added, producing a single histo-
gram of the distribution averaged over spatial scales.

The conjoined histogram for Sgr B2(M) is shown in Fig-
ure 10. It has a well-defined, centrally symmetric shape.
However, fitting it with a single Gaussian results in strong
positive residuals in the wings of the distribution (Fig. 10a).
A two-Gaussian fit, both Gaussians being centered at zero,
results in much smaller residuals (Fig. 10b). Because of the
method by which this histogram has been obtained, it con-
tains only averaged (over all the spatial scales) information
about the probabilities of deviations. Comparing the con-
joined histogram with the individual histograms shows that
summation significantly improves the statistics. This is indi-
rect evidence that the velocity field at all or most of the
accessible spatial scales has qualitatively similar statistical
properties, including an excess of large deviations from
Gaussian distribution. The two-Gaussian fit of the con-
joined distribution provides a quantitative measure of the
excesses, averaged over the entire scale range. The narrower
Gaussian approximately describes the central part of the
distribution, and the broader one describes its wings. The
ratio ‘‘ narrow/broad ’’ of areas under these two Gaussians
measures the excess of large deviations. From Figure 9b,
this ratio is �0.63, considerably less than unity. Thus, the
super-Gaussian wings are indeed significant.

Figure 11 shows the results of the same analysis for four
other H2O sources. In all of them, the wings of the distribu-
tion are much broader than those of the Gaussian that fits
the central part of the distribution. This demonstrates that
excess of large velocity difference deviations is a common fea-
ture of the turbulent velocity fields probed byH2Omasers.

5. IMPLICATIONS FOR SUPERSONIC TURBULENCE

In this section we discuss possible implications of our
results for the theory of supersonic turbulence. The statisti-
cal study of H2O masers described in the previous sections
reveals three important results: (1) self-similarity (fractality)
of the spatial distribution of the maser spots; (2) power-law
character of the structure functions for the velocity field
traced by the masers, with the power indices close to their
classic Kolmogorov values for incompressible turbulence;
and (3) excess of large fluctuations of the two-point velocity
increments. As all these features are typical of the relatively
well studied, incompressible turbulence, one can suspect
that H2O masers in regions of star formation arise in a tur-
bulent medium. If this assumption is correct, H2Omasers, as
a result of their record brightness and small angular sizes,
may become unique probes of astrophysical turbulence.
Since the velocity increments at the largest scales in the H2O
clusters are much greater than the probable speed of sound
in neutral molecular gas, we deal here, by definition, with the
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poorly studied supersonic regime of turbulence. Compari-
son with the available theoretical knowledge about incom-
pressible turbulence should therefore be done with caution.

5.1. Fractal Dimension and Intermittency of Turbulence

The major conclusion of our analysis in x 3 is that the
spatial distribution ofH2Omasers is fractal and that themea-
sured fractal dimension is low, dd1. If H2O masers trace the
dissipation of supersonic turbulence, we should conclude that
the fractal dimension of supersonic turbulence is consider-
ably lower than that of incompressible turbulence, the latter
being �2.6 (Mandelbrot 1982). If one accepts the hypothesis
that mass fluctuations in star-forming clouds are produced
by supersonic turbulence (Larson 1995), then the low fractal
dimension (�1.4) of a cluster of young stars in Taurus mea-
sured by Larson can be considered as a corroboration of our
conclusion. Another relevant fact may be the observed low
fractal dimension of the large-scale distribution of galaxies
(d � 1:2; Mandelbrot 1982), but the role of turbulence in
shaping this structure is even less clear.

It is helpful to introduce the ‘‘ running ’’ filling factor, �,
of ‘‘ daughter ’’ turbulence elements within ‘‘mother ’’ ele-
ments (Frisch 1995). The dimension of a fractal is expressed
through � by

d ¼ d0 �
ln�

ln s
; ð8Þ

where d0 is the dimension of the supporting space and s < 1
is the scaling factor from the mother eddies to the daughter
eddies. Constancy of � from scale to scale guarantees a well-
determined value of d (a linear plot in Figs. 2–4). From
equation (8)

� ¼ sd0�d ; ð9Þ

which shows that the filling factor of active daughter eddies
in mother eddies decreases when the fractal dimension of
turbulence decreases. The filling factor of active eddies is a
direct measure of the degree of intermittency (spottiness) of
turbulence. We conclude that highly supersonic turbulence,
as revealed by H2O masers and perhaps by the large-
scale galaxy distribution and the distribution of stars in
young clusters, is more intermittent than incompressible
turbulence.

The very possibility of representing the observed spatial
distribution of active turbulence elements by a single power
law means that turbulence is intermittent on virtually all
scales. The all-scale intermittency is also corroborated by
the fact that the strong excess of the large velocity difference
deviations is revealed by the statistics averaged over differ-
ent spatial scales (x 4.2). This seems to be an important con-
clusion because, in the case of incompressible turbulence,
with its relatively high fractal dimension, the existence of
intermittency in the inertial subrange of the scales (as
opposed to the dissipation subrange) has long been an open
question (Frisch 1995).

5.2. Does Supersonic Turbulence Have an Inner Scale?

According to the classical work by Kolmogorov (1941b,
1941c), incompressible turbulence is characterized by two
limiting scales: the outer scale L, where energy is supplied to
the turbulent flow, and the inner scale 	, where it is dissi-
pated via molecular viscosity. The ‘‘ inertial ’’ subrange of
linear scales l, where kinetic energy is neither injected into
turbulence nor dissipated, but only transferred from larger
to smaller scales, is between L4l4	. In the inertial sub-
range, turbulence tends to become homogeneous and iso-
tropic. Kolmogorov demonstrated that the inner scale of
incompressible turbulence is of the order of

	i �
�

3

�

�1=4

; ð10Þ

where 
 is the kinematic viscosity of the fluid and � is the
mean rate of energy dissipation per unit mass, given by

� ¼ U3

L
; ð11Þ

where U is the characteristic velocity difference at the outer
scale L. The expression given by equation (10) for the dissi-
pation scale is readily obtained from dimensional considera-
tions; it is the only combination with the dimensions of
length that can be constructed from the two parameters
relevant to this mechanism of energy dissipation, 
 and �.
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Our attempt to derive a possible inner scale for highly
supersonic turbulence is based on two assumptions. First,
proceeding from the common belief that the major mecha-
nism of energy dissipation in supersonic turbulence is via
shock waves, we assume that the sonic speed, cs, rather
than the molecular viscosity, is the relevant parameter of
the problem. Our second assumption may be more argu-
able. We assume that the second relevant parameter of
the problem is the same as for incompressible turbulence:
the mean rate of energy dissipation, �. Thus, we assume
that � is an approximate constant of the energy cascade,
equal to the rate, per unit mass, of supply of kinetic
energy at the outer scale. In other words, we assume no
significant energy dissipation at intermediate scales.
Although some theoretical and observational arguments
can be provided in favor of this hypothesis (see below),
we emphasize that, for the moment, it is only a hypo-
thesis, whose consequences we would like to compare with
observations.

With these two assumptions, we can derive the dissipa-
tion scale for supersonic turbulence, 	s, using standard
dimensional analysis. It is easy to show that only one combi-
nation can be formed by cs and � with the dimensions of
length, namely,

	s �
c3s

�
: ð12Þ

Substituting � from equation (11) into equation (12), we can

give 	s a more useful form:

	s �
c3sL

U3
¼ L

M3
L

; ð13Þ

where ML ¼ U=cs is the typical value of the Mach number
associated with the outer scale. Equation (13) shows that in
highly supersonic turbulence (ML41), the scale where
shock waves begin to dissipate turbulent energy effectively is
many orders of magnitude smaller than the outer scale L.

Anargument in favor of our assumption that highly super-
sonic turbulence does not dissipatemuch of its kinetic energy
at larger scales is the observed Kolmogorov, 13, slope of the
two-point velocity correlation function inH2Omasers. The 1

3
slope is a straightforward consequence of the conservation
of energy during its cascade along the hierarchy of scales.
Any energy dissipation in the inertial subrange would pro-
duce a steeper slope. The specific kinetic energy associated
with turbulent pulsations on a linear scale l is�v2l , where vl is
the rms turbulent velocity on the scale l. This energy is passed
to smaller scales in about one ‘‘ turnover ’’ time,

� � l

vl
: ð14Þ

Therefore, the rate of energy transfer is

� �
v2l
�
�

v3l
l

: ð15Þ

If � is constant, equation (15) gives vl / l1=3.

Fig. 11.—Same as in Fig. 10, but for H2O masers in W49N, W51N, W51MAIN, and W3(OH) (‘‘ Cluster ’’). Solid line: observed data; dashed line: one-
Gaussian fit to the central part of the observed distribution.
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Suppose now that some amount of energy is dissipated on
each scale. Then � is not a constant: it decreases with
decreasing l. Approximating this decrease by a power law,

v3l
l
/ l� ; � > 0 ; ð16Þ

we have

vl / l 1=3ð Þð1þ�Þ ; ð17Þ

which demonstrates the steeping of the scaling law (since
� > 0).

Why can energy dissipation in larger scale shocks be hin-
dered in highly supersonic turbulence? Here is one possible
answer. Although the potential component of the velocity
field (describing compression and expansion of the gas)
should play some part in a supersonic flow, this part may
crucially depend on the unknown boundary and initial con-
ditions of the flow (e.g., Falgarone et al. 1994). An extreme
case is a purely vortical initial motion of gas at the larger
scales. In this case, although the velocity increments for
these scales (the difference in velocities of two opposite
peripheral points of an ‘‘ eddy ’’) may be highly supersonic,
most converging flows within the eddy, which arise from
fluctuations, will produce oblique shocks, whose normal
velocity component, vsh, will not exceed cs by much, and
thus it will be small in comparison with the average vortical
velocity increment: vl4vsh � cs. Thus, even if a shock of
large scale is formed, the time it needs to sweep the eddy and
dissipate its kinetic energy is much longer than the turnover
time (given in eq. [14]), during which the eddy will disinte-
grate, passing its energy to smaller scales. Only when vl
drops down to �cs, which happens at the inner scale, do vs
and vl become comparable, and massive dissipation of
kinetic energy in random shocks becomes possible. This
gives a possible physical justification to equation (13).

5.3. Intermittency and Kolmogorov Spectrum

The important conclusion from the results presented
in x 4.1 is that the exponents of the low-order structure
functions for the highly supersonic turbulence are close to
their classic Kolmogorov values. In particular, the expo-
nents of the second-order structure function in all the inves-
tigated sources are close to 2

3. This value was predicted by
Kolmogorov for homogeneous incompressible turbulence
at very high Reynolds numbers (Kolmogorov 1941a, 1941b,
1941c). Later, many authors, beginning with Kolmogorov
himself (Kolmogorov 1962), attempted to introduce
theoretical corrections to this exponent that would account
for the experimentally detected intermittency of turbulence
(e.g., Mandelbrot 1967; Frisch, Sulem, & Nelkin 1978; see
also Frisch 1995). For example, in the popular ‘‘ �-model ’’
of Frisch, Sulem, and Nelkin, intermittency is assumed to
have a fractal geometry, and the corrected exponent is
given by


2 ¼
2

3
þ 3� d

3
; ð18Þ

where d is the fractal dimension of the set on which intermit-
tent turbulence concentrates. In the case of incompressible
turbulence d � 2:6 2:8; therefore, the codimension 3� d
and the whole correction factor (second term in eq. [18]) are
small. In fact, most of these intermittency corrections have

historically been introduced as small parameters, to account
for the small degree of observed intermittency in incompres-
sible flow. This has made it difficult to discriminate between
different theoretical models, as well as to judge, in general,
the plausibility of the approach treating intermittency as a
‘‘ disturbance ’’ to the classic Kolmogorov theory.

Highly supersonic turbulent flow should have specific fea-
tures different from those of incompressible turbulence.
These two regimes of turbulence should, at least, differ in
the ways they ultimately dissipate energy: via shock waves
and molecular viscosity, respectively. However, the power-
law character of the observed spectrum of supersonic turbu-
lence, over several decades in scale, is a strong indication
that the energy cascade from larger to smaller scales is as
intrinsic a property of supersonic turbulence as it is for
incompressible turbulence. Moreover, the prominent fractal
structure of the set on which supersonic turbulence dissi-
pates its energy and the non-Gaussian statistics of the two-
point velocity increments, as revealed by H2O masers, are
strong evidence for qualitative similarity of both regimes
of turbulence also in the sense of an intermittent character
of turbulent activity.

Since the energy cascade and intermittency are the only
two assumptions in the above-mentioned models of incom-
pressible turbulence, these models should likely also work in
the case of supersonic turbulence. The only application of
incompressibility of turbulence in these models is the
assumption that energy is not dissipated at the intermediate
(inertial subrange) scales. This assumption is not obvious
for compressible, supersonic turbulence. However, the
observed slope of the two-point velocity correlation func-
tion, close to Kolmogorov’s, suggests that dissipation on
intermediate scales is insignificant in the supersonic case,
too (x 5.1).

It is important to note, in this connection, that the H2O
masers reveal a very low fractal dimension (dd1) of the set
on which supersonic turbulence ultimately dissipates in
shock waves. With such a low d, the correction term from
the �-model (eq. [18]) is large, and we anticipate that, as a
result of intermittency, the slope of the second-order struc-
ture function will be at least twice as steep as Kolmogorov’s
classic value. Any dissipation of energy on intermediate
scales (the only possible difference from the incompressible
case) would steepen the structure function even more.
However, the observed structure functions are close to
Kolmogorov’s.

The observed pronounced intermittency of turbulence
combined with the classic Kolmogorov velocity structure
functions can only be understood if we accept that intermit-
tency is inherent in turbulence, not a mere disturbance of its
classic Kolmogorov properties. Such an approach to incom-
pressible turbulence is being developed by Barenblatt &
Chorin (1997, hereafter BC97). These authors claim, in par-
ticular, that both the tendency of the second-order structure
function to its classic dependence on l and an increase of the
degree of intermittency are natural asymptotic properties of
turbulence when the Reynolds number tends to infinity.

As first pointed out by von Weizsäcker (1951), the
Reynolds numbers of the interstellar gas are, in general,
very high. The Reynolds numbers of the dense nuclei of the
star-forming molecular clouds, where H2O masers reside,
are especially high, as a result of the low viscosity of the
dense gas. The turbulent flows probed by H2O masers have
typical velocities U � 106 cm s�1 at a scale of L � 1017 cm.
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With the typical number density �106 cm�3 and tempera-
ture �102 K for a molecular cloud core, the kinematic
viscosity is �1013 cm2 s�1, and the typical value of the
Reynolds number, Re � LU=
, is�1010.

For incompressible turbulence, the Reynolds number is a
measure of the width of the inertial subrange. If the inertial
subrange of supersonic turbulence probed by H2O had been
limited by viscosity, it would have been very large. How-
ever, there is little doubt that, in the highly supersonic
regime, the dissipation of energy starts at a much larger
scale than the inner scale determined by viscosity. In x 5.2
we postulated the existence in highly supersonic turbulence
of an inner scale determined by energy dissipation in small-
scale stochastic shocks and given by equation (13).
Although this inner scale is much larger than the Kolmo-
gorov dissipation scale (	s � 1013 cm; 	i � 107 cm), there is
still a large inertial subrange in the highly supersonic regime:
almost four decades in projected linear scale.

One can try to reformulate the BC97 theory and obtain
an asymptotic law for the supersonic regime using theMach
number rather than the Reynolds number. As is customary
in crude phenomenological approaches, we shall ignore dis-
tinctions between structure functions involving different
components of the velocity vectors. Specifically, we shall
assume that the second-order structure function Dzz involv-
ing the line-of-sight (z) component of the difference velocity
vector for two points reflects typical properties of all other
structure functions.

Following the reasoning of BC97, we can assume that in
the inertial subrange of supersonic turbulence

Dzz ¼ f ðl;L; �; csÞ ; ð19Þ

where � is the mean rate of energy dissipation per unit mass.
It is assumed that in this inertial subrange the energy flux
from larger to smaller scales is nearly constant and equal to
�. Applying the standard dimensional analysis, we find the
scaling law forDzz:

Dzz ¼ �lð Þ2=3�
�

l

	s
;ML

�
; ð20Þ

where � is a dimensionless function of its two dimensionless
arguments. We chose the Mach number at the outer scale,
ML, and the running scale l measured in the units of inner
scale, 	s, as the two dimensionless arguments. In the case of
incompressible turbulence the Reynolds number, instead of
theMach number, enters the parentheses in equation (20).

The dimensional analysis, by itself, does not tell us any-
thing about the properties of the function � and its two
arguments. In order to finalize the scaling law, one must
make a similarity assumption about the behavior of � as its
two arguments tend to infinity. As BC97 point out, two dif-
ferent assumptions about this function mark the historical
evolution of incompressible turbulence theory:

1. Complete similarity in both arguments: � � �ð1;1Þ
¼ const, when both dimensionless arguments tend to
infinity (Kolmogorov 1941a).
2. Complete similarity in Re, but incomplete similarity

in l/	, leads to a power-law dependence of � on l/	
(Kolmogorov 1962).

The first assumption leads to the classic Kolmogorov
DðlÞ / l2=3. The second assumption introduces an additive
correction to the power index, which has been interpreted as

a correction for intermittency. BC97 argue that the second
assumption is internally contradictory and make the sepa-
rate assumption of incomplete similarity in l/	 and no simi-
larity in Re. This again generates an additive correction to
the power index, but now the correction depends on the
value of Re. In the limit of Re ! 1 the correction tends to
zero and one is left with the classic DðlÞ / l2=3 dependence.
The correction is substantial only when Re is not large.

These similarity arguments can be repeated in the case of
highly supersonic turbulence, with the formal substitution
of ML for Re. The BC97 theory makes no quantitative esti-
mates of the magnitude of Re (orML, in our case) necessary
to reach the asymptotic behavior ofD. We can suppose that
in the case of turbulence probed by H2O masers,ML is high
enough for the correction to Kolmogorov value of the
power index to lie within the experimental errors. Thus, the
BC97 theory (and its extension to supersonic turbulence)
rejects the notion that significant intermittency requires a
significant correction to Kolmogorov’s (1941a, 1941b,
1941c) law and thereby reconciles the observed low fractal
dimension (high intermittency) of supersonic turbulence
and its classic Kolmogorov velocity structure functions.

6. THE ORIGIN OF H2O MASERS

One can speculate that a jet from a young star produces
two basic flow regimes in the ambient gas: (1) a frontal,
high-Mach shock and (2) a high-vorticity flow due to the
velocity shear at the side interface of the jet and the ambient
gas (e.g., Masson & Chernin 1993). We surmise that the
low-velocity H2O masers are associated with the second
regime. The high-velocity H2O masers may be connected
with the first regime, but one can anticipate that this connec-
tion, and turbulence produced by the frontal shock, would
be more complicated than in the second regime. Looking
for the simplest cases of supersonic turbulence, we discuss
only the second regime and the low-velocity masers in this
investigation.

A power-law spatial distribution correlation function in
all of the H2O sources investigated here signifies self-similar
clustering over almost 4 orders of magnitude in scale, from
�104 to �1 AU. The ‘‘minimal clusters ’’ in this hierarchy
(‘‘ features ’’ in the terminology of Gwinn 1994) are actually
spatial and spectral blends of elementary sources, i.e., those
observed through an element of spectral resolution. By the
order of magnitude, both the elementary sources and the
minimal clusters have a typical size of�1 AU, which is intri-
guingly close to the predicted dissipation scale of supersonic
turbulence, given by equation (13). In a typical H2O maser
source, the low-velocity features are spread over a projected
area of L � 1017 cm and occupy a velocity interval U � 20
km s�1. Taking cs � 1 km s�1 (appropriate for probable
kinetic temperatures of several hundred K), we have
ML � 20 and 	s � 1017=ð20Þ3 � 1013 cm � 1 AU. Unless
this is a coincidence, the smallest clusters of H2O masers
may be the sites of the ultimate dissipation of turbulent
energy via stochastic shocks on the inner scale of supersonic
turbulence.

This new conceptual approach to H2O masers may have
several important consequences for understanding the very
mechanism of masing in these sources. It has often been
argued that shock waves provide the best conditions for
pumping H2O masers. Strelnitski & Sunyaev (1973) inter-
preted the observed large dispersion of the H2O Doppler
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velocities in W49N as due to supersonic gas outflow from a
young host star and conjectured that the interaction of the
outflow with the surrounding gas could produce shock
waves necessary for pumping. This hypothesis has been fur-
ther developed by many authors, who have elaborated on
details of the shock structure and collisional-radiative (the
first word standing for the source and the second for the sink
of the quantum heat engine) or collisional-collisional
schemes of maser pumping behind a shock (e.g., Shmeld,
Strelnitski, & Muzylev 1976; Strelnitski 1984; Kylafis &
Norman 1986, 1987; Hollenbach, McKee, & Chernoff 1987;
Elitzur, Hollenbach, & McKee 1989; Kaufman & Neufeld
1996). A common feature of all these models is that the
pumping shock is a result of a direct collision of the outflow
with a dense blob in the surrounding quiescent gas or a
direct collision of a dense blob in the outflow with the sur-
rounding gas (Tarter & Welch 1986). In the present model,
the pumping energy is not imparted to the masing gas blobs
directly by the stellar wind. Instead, the energy is channeled
to the masers by a cascade from larger scales, which receive
energy from the stellar wind or jets.

In previous models, the shocks pumping H2O masers
were assumed to have high velocities. These were either
high-speed (e50 km s�1) dissociative J-type shocks (Elitzur
et al. 1989) or slower (e10 km s�1) C-type shocks propagat-
ing perpendicular to the magnetic field (Kaufman &
Neufeld 1996). Two main goals were pursued in developing
those models: (1) the achievement of the maximum possible
abundance of H2O molecules via chemical reactions and (2)
the realization of sufficiently high kinetic temperatures for
pumping the 616–523 and other masing transitions. It has
been argued (Melnick et al. 1993; Kaufman & Neufeld
1996) that to fulfill both these requirements, temperatures
e1000 K are needed. An important question is whether the
slow shocks we advocate in this paper can provide such tem-
peratures. An analysis of the shock structure is beyond the
scope of the present paper. However, we note that a J-type
shock propagating along the magnetic field lines will have a
postshock temperature e1000 K, if its velocity is e3 km
s�1, which is a realistic velocity for an inner scale shock in
our model.

7. ARE H2O MASERS AN ADEQUATE PROBE OF
SUPERSONIC TURBULENCE?

If the new conception of H2O masers proposed here is
correct, they may become an ideal tool for studying the
properties of supersonic turbulence. In contrast to the
large-scale ISM, supersonic turbulence probed by H2O
masers has only one source of energy, supplied at the
largest scale: the interaction of the outflow from a young
star with the surrounding gas. Furthermore, these flows
are highly supervirial, so that gravitational effects are not
important. Most probably, these flows are also super-Alf-
vénic. With the probable magnetic field strength
B � 10�3 G in the dense cores of molecular clouds and
B � 10�1 G in the H2O maser clumps (Fiebig & Güsten
1989), and with the probable number densities of molecu-
lar hydrogen, n � 106 and 1010 cm�3, respectively, the
Alfvénic velocity is vA ¼ B=ð4��Þ1=2 � B=ð4�mH2

nÞ1=2 � 2
km s�1 in both cases. This is much less than the outer
scale velocity (vL � 20 km s�1). Thus, turbulent velocities
at most of the scales should be greater than the Alfvénic

velocity, which means that the magnetic field does not
constrain turbulent pulsations.

Masers are more effective than traditional ISM probes of
turbulence, such as thermal or fluorescent spectral lines,
from the observational standpoint. Maser lines are bright
and narrow, which allows the spatial and kinematic struc-
ture of the associated flow to be measured with high preci-
sion. Because masing condensations are so small (d1 mas),
every spectral feature detected by the interferometer gives a
direct measure of line-of-sight velocity at a given point in the
flow, projected onto the sky. Indeed, the requirement of the
velocity coherence along the line of sight (to produce lines
with the observed widths d1 km s�1), together with the
observed line-of-sight velocity gradients in the transverse
direction of �1 km s�1 AU�1, and under the assumption
that velocity gradients in the region are more or less iso-
tropic, limits the probable length of a maser hot spot along
the line of sight to d10 AU. This is much less than the size
of the whole active region (�10,000 AU) and allows us to
consider the H2O masers as pointlike probes of the velocity
field, virtually as effective as the direct probes used to study
terrestrial turbulent flows.

Doubts can arise on whether H2Omasers are an adequate
probe of the geometry of the turbulence dissipation. For
example, as a result of possible directivity of their radiation,
some masing blobs may be unobserved. Can this distort the
statistics we study? Obviously, the nonobservability of a
fraction of places where turbulence dissipates results in
underestimation of the space filling factor of dissipation.
However, this will not affect the deduced fractal dimension
of the set on which dissipation takes place, if all the
‘‘ eddies,’’ down to the smallest ones, contain some amount
of observable masers. This follows from equation (4): reduc-
tion of � by any factor (due to nonobservability of a fraction
of the masers) will not change the value of the logarithmic
derivative and thus the value of d.

If the directivity of the maser radiation is very high, it can
affect observability of the smallest eddies, containing rela-
tively small numbers of elementary masers. By an unlucky
chance, all the masers within such an eddy could be turned
away from the observer. The larger eddies, containing more
elementary masers, should still be observable, although
their contours will be delineated by reduced numbers of
maser spots. A lack of observability of the smaller eddies
will result in a decrease of � with the decreasing scale (see
eq. [10]) and in a corresponding change of the slope of the
plots in Figures 2–4. Using equations (8), (4), and (6), it is
easy to convince oneself that this would steepen the slope of
the plot toward the smallest scales in Figures 2 and 4 and
flatten it toward the smallest scales in Figure 3. These effects
are either unseen or quite small in these figures. We believe,
therefore, that the majority of the scales, covering almost
4 orders of magnitude, are well represented by the H2O
masers and that d is determined adequately, regardless of
possible omission of a fraction of the maser probes caused
by radiation directivity.

8. CONCLUSIONS

Our conclusions are as follows:

1. VLBI maps of five H2O maser sources in regions of
star formation reveal fractal spatial distribution of the mas-
ing hot spots, a power-law dependence of two-point velocity
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increments on spatial scale, and the non-Gaussian statistics
of velocity increments (a strong excess of large deviations
from the mean value). All these properties are known as
typical of turbulence.
2. If the H2Omasers indeed trace turbulence, our quanti-

tative analysis shows that this highly supersonic turbulence
is characterized by a much lower fractal dimension (dd1),
and thus much stronger intermittency, than incompressible
turbulence. Strong intermittency at virtually all the spatial
scales is also confirmed by the excess of large velocity incre-
ments at all scales.
3. Unexpectedly, the power indices of the low-order

velocity structure functions for the putative supersonic
turbulence are found to be close to the classic Kolmogorov
values for high Reynolds number incompressible turbu-
lence. This is incompatible with the strong intermittency
(low fractal dimension) in traditional approaches to turbu-

lence but may find its explanation in the framework of the
new approach put forward by BC97.
4. Supersonic turbulence with a high Mach number at

its greatest scale may possess an inner scale, at which
the bulk of its energy is dissipated in low Mach number
stochastic shocks. The predicted value of the inner scale
is close, by the order of magnitude, to the observed
sizes of the H2O hot spots. We hypothesize that the
H2O masers are generated in the random shocks at the
inner scale of highly supersonic turbulence produced in
the ambient gas by the intensive outflow from a newly
born star.
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