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We investigate the influence of directional or bonding interactions on the structure and phase diagram of
complex fluids. Using a generalization of the theory of associating fluids we study the interplay between the
self-assembly process, driven by the bonding interactions, and the isotropic-nematic transition, driven by the
anisotropic shape of the equilibrium clusters, for a model consisting of particles with two bonding sites and
discrete orientational degrees of freedom. The theory is applied over a wide range of temperature and density
in two dimensions and the results are compared with Monte Carlo simulations on the square lattice. The
specific heat is shown to exhibit pronounced structure at the onset of self-assembly and at the nematic-isotropic
transition that occur over a narrow range of temperature, at fixed density. The results reveal that bonding is
enhanced by the nematic ordering, although a bonding temperature still occurs in the isotropic phase at low
densities. The average rod length is described quantitatively in both phases, while the location of the ordering

transition, which was found to be continuous, is predicted semiquantitatively by the theory.
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I. INTRODUCTION

Recently it has become possible to fabricate well-defined
colloidal particles with dimensions in the nanometer-to-
micrometer range. Unlike in atomic systems, the interactions
between colloidal particles may be controlled, providing new
windows into structural and thermodynamic behavior [1]. Of
particular interest are the so-called patchy colloids, the sur-
faces of which are patterned so that they attract each other
via discrete bonding sites of tunable number, size, and
strength. The thermodynamics of bonded self-assembled sys-
tems is currently a topic of intense research. On the theoret-
ical side, studies based on the theory of associating fluids
[2,3] and computer simulations of simple models have pro-
vided a wealth of new results [4-7]. Self-assembled systems
are best characterized by a bonding line, in the temperature-
density plane, that signals the onset of the bonding process,
beyond which the fraction of particles in bonded clusters is
significant. This line is defined by the maxima in the specific
heat that reveal a rapid change of the internal energy as the
bonds are formed. The presence of these maxima is clear,
experimentally detectable, evidence of the leading role of
bonding interactions in the thermodynamics. In systems with
two bonding sites per particle, only (polydisperse) linear
chains form and there is no liquid-vapor phase tansition [7].
However, if the chains are sufficiently stiff they may undergo
an isotropic-nematic transition, at fixed density, at a tempera-
ture close to the bonding temperature.

It is well known that solutions of rodlike particles exhibit
a transition from a disordered isotropic phase to an ordered
nematic phase as the concentration of rods increases. In the
isotropic phase the rods have no preferred orientation,
whereas in the nematic phase there is an average alignment
of the rods. In 1949, Onsager [8] showed that the ordering
could be explained, at least for solutions of monodisperse
long thin rigid rods, by considering the competition between
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the excluded volume of two rods and the orientational en-
tropy. In a system of self-assembled rods, at fixed concentra-
tion, an isotropic-nematic transition may be driven by the
temperature since the average rod length increases rapidly as
the temperature decreases. However, the self-assembled sys-
tem 1is intrinsically polydisperse and the generalization of
Onsager’s approach to this problem is far from trivial.

A related problem arises in the study of suspensions of
rigid rods with quenched polydispersity, i.e., systems where
the distribution of lengths is predetermined (by preparation)
and does not depend on the density and temperature. In a
recent study with solutions of natural (polydisperse) rodlike
clay particles a strong first-order nematic transition was ob-
served at volume fractions close to 0.06, for rods with
length-to-diameter ratio of approximately 27 [9]. The phase
volumes and particle concentrations in the coexisting phases
were determined and the polydispersity of both daughter
phases was found to be distinctly smaller than that of the
parent suspension [9]. The dependence of these quantities on
the concentration as well as the observation of a second nem-
atic phase were found to be in line with Onsager’s theory
extended to bidisperse systems [10].

Most studies to date of continuous polydispersity are per-
turbative [11], limiting the validity of the analysis to situa-
tions with narrow distributions of rod lengths that are not
guaranteed in self-assembled systems. A different approach
to the ordering of monodisperse rodlike mixtures has been
proposed by Zwanzig [12]. In this model the orientations of
the rods are restricted to be in one of three mutually perpen-
dicular directions in three dimensions. This enables the exact
calculation of higher-order virial coefficients and of the ori-
entational distribution functions. In contrast to Onsager’s ap-
proach, the Zwanzig model is readily extended to polydis-
perse systems [13] and the polydisperse Zwanzig model
provides a useful starting point for understanding the effects
of continuous equilibrium polydispersity on the phase behav-
ior of hard rod systems.
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In this paper, we consider the isotropic-nematic transition
in a system of self-assembled rods as part of the general
ongoing effort to develop a deeper understanding of self-
assembly. We consider a simple version of the models for
patchy colloids used in [4—7]. Each particle is endowed with
an orientational degree of freedom that can take on a finite
number of values representing the discretized set of orienta-
tions of the sticky patches. The interaction strength between
two particles depends on their relative orientations and on
their orientations relative to the intermolecular vector. This
anisotropy of the interactions mimics the fact that two
patches on different particles can only stick if they overlap.
In the spirit of the Zwanzig model we assume that the inter-
molecular vector can take only a discrete number of orienta-
tions. The theory for the structure and thermodynamics of the
self-assembled Zwanzig model is particularly simple and
physically transparent allowing us to investigate the interplay
between self-assembly and nematic ordering. We use the
theory to analyze the full range of temperature and density of
a system of particles with two bonding sites in two dimen-
sions and perform lattice Monte Carlo simulations to check
the theoretical predictions. In particular, we calculate the re-
sponse functions and investigate whether a bonding tempera-
ture occurs above or below the isotropic-nematic transition.

For the continuum orientational problem, there is general
agreement that in three dimensions, infinitely thin rods un-
dergo a first-order isotropic-nematic transition, as pointed out
by Onsager, and that polydispersity increases the transition’s
first-order character [14—16]. By contrast, the nature of the
transition in two dimensions has been a topic of active the-
oretical study over the last three decades and appears to de-
pend crucially on the particle interactions. Early seminal
contributions to this subject were made by Straley [17] and
Frenkel and Eppenga [18] and continuous polydispersity was
considered in [19]. Here, we consider a self-assembled two-
dimensional system with discrete orientations that is ex-
pected to have a less subtle phase behavior.

Even without self-assembly, however, the lattice version
of our model was shown recently to exhibit a number of
interesting features [20-22]. It has been shown that (i) nem-
atic order is stable above a minimal size of the rods aspect
ratio [20,22]. (ii) The transition is continuous, in the Ising
and Potts universality classes for square and triangular lat-
tices, respectively [21]. (iii) On the square lattice the nematic
transition is reentrant, as the full lattice is disordered [22].

This paper is organized as follows: In the next section we
provide a derivation of the theory and apply it to the self-
assembled Zwanzig model in two dimensions. Lattice simu-
lations are described in Sec. III where a detailed comparison
with the theoretical predictions is carried out. The results are
further discussed in Sec. IV where we summarize our con-
clusions.

II. SELF-ASSEMBLED ZWANZIG MODEL:
THEORETICAL RESULTS

We consider a model for self-assembly in the spirit of the
Zwanzig model. The particles have spherical hard cores and
interact with nearest neighbors through anisotropic attractive
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interactions. Each particle possesses a discrete number of
orientations, along d mutually perpendicular directions in d
dimensions, akin to the discrete orientations of rods in the
model proposed by Zwanzig. The bond energy is —e if two
neighboring particles are aligned with each other and with
the intermolecular vector and is zero otherwise. A cluster or
uninterrupted sequence of bonded particles is a rod in two
dimensions. At fixed density, the average rod length in-
creases as the temperature decreases and the polydisperse
rods will undergo an ordering transition. In the following we
provide a theoretical framework to describe the ordering
transition in the self-assembled Zwanzig model.

A polydisperse system of rods in three dimensions with
three discrete orientations along three perpendicular direc-
tions (polydisperse Zwanzig model) has been investigated
theoretically in [13]. Apart from the spatial dimension our
model differs from that studied in [13] as it considers equi-
librium self-assembly. In the self-assembled Zwanzig model
the polydispersity is annealed, rather than quenched, and the
rod length and orientational distributions change as the tem-
perature and density change. There are however similarities
in the theoretical treatments of these models.

We start by defining ¢(€), the density of clusters (rods)
with length €, ¢,(f), the density of clusters with length €
and orientation « [along the x, y directions in two dimen-
sions (2D)] and ¢, the total density of clusters. These densi-
ties are related through the sum rules,

B(6) = 2 o (0), (1)

b= ; B(0). )

We also define P,(€) as the fraction of clusters of length €
with orientation «. These are the discrete orientational distri-
bution functions that are normalized,

2P (0)=1, 3)

and may be used to write the density of clusters with length
€ and orientation « as

Ball) = PL)P (L) (4)

It is useful to define p,, the density of particles in clusters
with orientation a and p, the total density of particles. The
particle densities are related to the cluster density distribu-
tions through

Po= ; €a(0), (5)
p=2€(0), (6)
€
and
pP=2 P ()
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The free energy per unit volume of an ideal (noninteract-
ing) mixture of clusters with density distributions ¢,(€)
(which we will take as the reference system) is

B =2 ; Ga(O[In ¢, () =1 -In G, (O)],  (8)

where

go(€) = exp[ (£ - 1) Be], )

is the partition function of a cluster of length € and orienta-
tion « (divided by the total volume).

The Zwanzig model is treated in the second virial ap-
proximation even though, by contrast to the Onsager model,
this is not exact in the limit of infinitely long rods [12]. The
excess free energy is determined essentially by the excluded
volume of a pair of rods [13],

=2 S S 400, Velbasl' ), (10

a,a’ €4

where V. (€,a;€’,a') is the excluded volume of two rods,
the first with length € and orientation « and the second with
length €’ and orientation «'. This volume is given by

Vexe(l, a0’ ) =€€" (1= 8, 41), (11)

where we neglected the excluded volume of parallel rods
since it is small compared to the excluded volume of perpen-
dicular rods, in the Onsager limit (see [12,13]).

Substituting (11) in (10) we find

B =2 €0 b (0) (€)= p,p,, (12)

I

a drastic approximation for the excess free energy of the
model [23], the simplicity of which will allow us to derive
analytic expressions for the thermodynamics and structure of
the polydisperse system, in the isotropic and nematic phases.
In Sec. IIT we check its accuracy by comparing the theoret-
ical results with the results of computer simulations.

The equilibrium distributions, ¢,({), are found by mini-
mizing the total free energy with respect to the orientational
distribution functions P,(€) and cluster density distributions
@(€), with the constraints (3) and (6). We introduce
Lagrange multipliers, k,(€) and u, and write

5Bf

o =kl (13)
5B
s(0) (14

The Lagrange multipliers k,(€) are determined by the nor-
malization condition of the orientational distribution func-
tions (3) while u, the chemical potential, is determined by
the sum rule for the total particle density (6). In zero external
field, the k, are independent of « and a straightforward
implementation of (3) yields the usual orientational distribu-
tion functions [13].

To derive the general equilibrium conditions in 2D it is
convenient to write the free energy as
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Bf= 2 2 ¢o(OIn ¢o(0) = 1= (€~ 1)Bel + p,p,.

a=x,y €
(15)

Recalling the dependence of p, and p, on ¢, it is easy to
show that

Bf
50,0 =" A0~ (€= DB b, (16)
and
Bf _(r_
59,0 =In ¢y (€) - (€ - 1)Be+ {p,. (17)
Defining the cluster density distribution difference as
o€) = () - ¢,(£) (18)

the minimization of Bf with respect to the orientational dis-
tribution functions (13), subject to the normalization condi-
tion, is equivalent to the minimization of Bf with respect to

o(f),

oBf
) ={Bh, (19)
where £ is the external field coupled to the orientational den-
sity difference, p,—p,.

The derivatives of Bf with respect to ¢(€) and 5(f) are
simply related to its derivatives with respect to ¢.(f) and
¢,(€), (16) and (17), and the equilibrium conditions, (14)
and (19), become

€Bu=5[In ¢,(€) +1n ,(€) + £p] - (€ - 1)Be,  (20)

€Bh=3[In ¢(€) —In ¢ () — €(p,—p)].  (21)

The solution of these equations yields the equilibrium cluster
density distributions,

¢.(€) = exp(- Be)[z exp(A)]", (22)
¢,(€) = exp(- Be)z exp(- )", (23)
where we have defined the quantities,
z=eXp(B(M+ o - g) (24)
A=pBh+ %, (25)
A=p.—p,. (26)

A is the order parameter coupled to the external field, A,

while z and A are mixed field-density (w—p,h—A) variables,
that are coupled as a result of the equilibrium self-assembly
process. We can think of z as the activity of an effective
chemical potential, measured with respect to the bonding en-
ergy —e (in units of kgzT), minus one-half of the total density,

§. Likewise, 5, is an effective external field given by the
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external field / (in units of kzT), plus one-half of the order
parameter, %.

The equilibrium orientational densities obtained from
(22), (23), and (5) are

Z exp(&)

— _ 27)
[1-zexp(d)]?

p.=exp(- Be)

zexp(— A)

— _ 28)
[1-zexp(-A) (

p, = exp(- Be)

in terms of which all thermodynamic and structural quanti-
ties of interest may be determined. In what follows we sum-
marize those that will be used in this study.

(a) Equations of state. The density and order-parameter
equations of state are obtained by substituting the equilib-
rium orientational densities, (27) and (28), in the equations
for the total density, p, (7) and the order parameter, A, (26),

— BE)< coxp® | zexpl-4) )
[1-zexpM)P [1-zexp(- D]/
(29)
and
A = exp(- ,86)( zexp(&) B zexp(— A) )
[1-zexp()P [1-zexp(-A)P
(30)

In all subsequent calculations of equilibrium quantities the
equations of state are solved to obtain the equilibrium values
of A and z, at fixed p and T, in zero external field, 2=0. Note
that the order-parameter equation of state (30) has always
one solution A=0 when ~=0. In the region where this is the
only solution the system is in the isotropic phase. It is
straightforward to show that, in zero field, z is an even func-
tion of A and as a result, at fixed p and 7, the order-
parameter equation of state (30) has either one or three so-
Iutions. The pair of nonzero order-parameter equilibrium
solutions is symmetrical, ruling out the possibility of a first-
order isotropic-nematic transition in the 2D Zwanzig model
(within this approximation).

(b) Free energy and pressure. The equilibrium free energy
follows by substituting the equilibrium cluster density distri-
butions, (22) and (23), into (15),

Bf(T.p.A) = Bup + BhA - Bp, (31)
where the pressure is given by
e 2
Bp=¢+ 7 - (32)

(c) Average rod length. The equilibrium average rod
length is obtained immediately from
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_ 1
{ =

- _ .63
1- z(cosh(&) + % sinh(&))

where the equality follows from the calculation of the equi-
librium total density of clusters, ¢, using (22) and (23). In
the isotropic phase the average rod length is found by setting
&:O, and we find

—_—
1+ V1 +2pexp(Be)

(= :
2

(34)

in line with the result for a system of noninteracting self-
assembled chains [24,25].

(d) Cluster density distribution. The equilibrium total
cluster density distribution, ¢(€), is obtained from (22) and
(23),

d(€) =2 exp(— Be)z’ cosh(¢A), (35)

and, as expected, it is a single exponential in the isotropic

phase, A =0, while in the nematic phase it is the sum of two
exponentials.

(e) Isotropic-nematic transition line. The critical
isotropic-nematic transition occurs on a line in the (p,7T)
plane, given by

(12

=0 (36)
A >p,h=0

that after evaluating the derivatives (see the Appendix) be-
comes

pl+z_

21—z (37

Above this line [in the (p,T) plane] the stable phase is iso-
tropic and below it is nematic. Using the equation of state for
the total density, (29), the critical line may be written as

(2-p)(2+p)
exp(Be)=—"_35—, (38)
2p
or, defining the dimensionless temperature as T*=kzT/ €,
2-p)2+p)\ |
T*‘f=[1n(wﬂ . (39)
C 2p

The critical line and the equilibrium average rod length at
the transition are plotted in Fig. 1, for the whole range of
temperature and density. Note that the theory predicts stable
nematic phases below the minimal value of the aspect ratio
established for monodisperse rods, in 2D simulations
[20,22]. In this region of high densities (>0.3) the results of
the theory for the nematic phase are not reliable (see below)
and higher-order virial approximations or more sophisticated
theories are needed to describe the high density regime [23].

(f) Response functions. Finally, the response functions—
specific heat per particle (at constant volume) and order-
parameter susceptibility—were calculated in zero field. The
corresponding analytical expressions may be found in the
Appendix.
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FIG. 1. (a) Phase diagram of the model. The nematic phase is
stable at low temperatures and high densities. The full line is a line
of critical transitions that separates regions of isotropic and nematic
stability; (b) equilibrium average rod length on the transition line.

III. SELF-ASSEMBLED ZWANZIG MODEL:
LATTICE SIMULATIONS

In this section, we present results of Monte Carlo simula-
tions of the self-assembled Zwanzig model in equilibrium.
We will focus on the interplay between self-assembly and the
ordering transition and on a detailed comparison with the
theoretical predictions. However, we will not investigate the
reentrant nematic transition at high densities [22], that is not
described by the theory presented above.

For simplicity, we consider a square lattice of length L
with toroidal geometry (fully periodic boundary conditions)
and N=pL? sites occupied by particles. The two bonding
sites in each particle may be thought of as an internal axis
that may be aligned in either of the two lattice directions. In
general, the lattice symmetry imposes strong constraints on
the orientational configurations of particles but this is not a
problem in the Zwanzig model, where the orientational de-
grees of freedom are discrete. The lattice discretization of the
translational degrees of freedom is not relevant in this con-
text.

The internal energy of a particular configuration is pro-
portional to the number of bonds between particles, where
two particles are said to share a bond with energy —e if they
are nearest neighbors on the lattice and both axes are parallel
to the lattice vector connecting them. A cluster or uninter-
rupted sequence of bonded particles is a rod. In the following
we will use dimensionless units temperature 7™ as defined in
the preceding section. The lattice constant provides the unit
of length. The densities are then fractions of occupied sites
while rod lengths are given in terms of the number of self-
assembled particles in each rod. In order to avoid cluttering
the text and figures with stars we use the same symbols (p, €)
for these numbers as for the corresponding dimensional
quantities.

We obtain the equilibrium properties of the system at a
given temperature and density by standard Monte Carlo tech-
niques [26]. From a random initial configuration (sites occu-
pied with probability p and particle axis orientation chosen
with probability 1/2), single-particle moves are used to ex-
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FIG. 2. Representative equilibrium configurations for the system
with p=0.2 at four temperatures.

plore the state space in a Markov process constructed to pro-
duce a sequence of states appearing with Boltzmann prob-
abilities in the asymptotic limit. Our choice of dynamical
move consists of randomly selecting a pair of lattice sites,
one occupied and one unoccupied, moving the selected par-
ticle to the unoccupied site, and rotating its axis. We use the
Metropolis acceptance rule for rapid sampling of the state
space. A selection of representative equilibrium configura-
tions at four temperatures is shown in Fig. 2.

Once an equilibrium distribution of states has been ob-
tained, the rod length density distributions, ¢,(€) and ¢,({),
are determined and thermodynamic quantities of interest are
calculated from the moments of these distributions. In par-
ticular, we calculated the number of bonds, Ny,,4, the inter-
nal energy per particle, u,

E__Nbonds__<1_£)> (40)
€ N p/’

the order parameter, A, the orientational densities p, and p,,
etc. In order to obtain a large number of statistically inde-
pendent measurements for calculation of expectation values,
we measure the correlation time 7 at each (p,T*) using the
autocorrelation of the order parameter A(z) (time is measured
in units of N move attempts). Measurements are then taken at
times separated by at least 27.

Extensive computer simulations of monodisperse rods on
the square lattice have shown that the isotropic-nematic tran-
sition is in the Ising 2D universality class [20-22]. Although
polydispersity may affect the nature of the transition, the
theory, described previously, predicts a line of continuous
transitions (see Fig. 1) and we have limited the simulation
analysis to checking that the results are consistent with the
working hypothesis that the nature of the transition remains
unchanged.

In the following we carry out a quantitative comparison of
the simulation results with the theoretical predictions de-
scribed in the preceding section, at two densities p=0.2 and
p=0.4.
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FIG. 3. Two signatures of the self-assembly process for a system with density p=0.2 and length L=100: The specific heat per particle as
a function of temperature (a) and the total rod length density distribution (b). In the former, simulation data—as measured from the
fluctuations in the internal energy—is plotted over the theoretical curve. The total rod length density distributions are shown for three
temperatures 7#=0.14 (triangles), 0.20 (squares), and 1.0 (circles), with the theoretical curves from (35) over-plotted.

A. Self-assembly in the presence of ordering

The equilibrium behavior of the self-assembled Zwanzig
model is broadly characterized by two related phenomena:
the self-assembly of particles into rods and the alignment of
these rods once they attain a certain average length. Both of
these phenomena are illustrated in Fig. 2, where it is seen
that a decrease in temperature yields longer rods and at the
lowest temperature a preferred orientation is apparent.

To analyze the interplay between self-assembly and order-
ing, we consider the specific heat per particle which can be
determined from the fluctuations of the internal energy per
particle, i.e.,

2 2
ev_ Cv MO —? )
kg kgN eT*
where Cy, is the total specific heat.

At p=0.2, the theory described in the preceding section
[line in Fig. 3(a)] predicts a (local) maximum for the specific
heat in the isotropic phase. In single phase self-assembling
systems, this maximum is used to define the bonding tem-
perature, since it signals the onset of significant cluster for-
mation. The theory, being mean field, also predicts a discon-
tinuity in the specific heat at the phase transition (and not the
2D Ising logarithmic divergence, expected for an exact
theory of the 2D self-assembled Zwanzig model). At the dis-
continuity, the specific heat is larger in the nematic phase,
indicating that the isotropic nematic phase transition en-
hances bond formation and self-assembly.

As can be seen in Fig. 3(a), the simulation results for ¢y
are characterized by a broad maximum, which is rather
noisy. However, careful inspection of the simulation data
close to the peak [inset of Fig. 3(a)] shows the existence of a
shoulder, at a temperature above that of the (global) maxi-
mum. This shoulder is described remarkably well by the the-
oretical bonding peak that signals the onset of self-assembly,
in the isotropic phase. At lower temperatures, the ordering
transition is marked by a sharper and higher maximum, dis-
tinct from the self-assembly shoulder, suggesting the ex-

pected divergence capped by finite size effects. Therefore,
the simulation results confirm the prediction of the theory:
Ordering enhances bonding and self-assembly.

In the case of the higher density, p=0.4, the theory pre-
dicts that the bonding temperature (signaled by a local maxi-
mum of the specific heat) shifts into the nematic phase (not
shown). This result must be taken with caution, however,
since the second virial coefficient approximation gives, par-
ticularly at higher densities, a poor description of the ex-
cluded volume of the system in the ordered phase that leads
to an overestimate of the transition temperature. The simula-
tion data for the specific heat at this density (not shown)
were inconclusive in addressing this question.

Further evidence of the interplay between self-assembly
and ordering can be seen in the length distributions for this
polydisperse system. Normalized histograms showing the
rod length density distributions, at p=0.2, for a number of
temperatures are shown in Fig. 3(b). In the isotropic phase,
the simulation data reveal a single exponential distribution as
predicted by the theory (35). At the lowest temperature, T*
=0.14, in the nematic phase, there is evidence of a kink in
the density distribution near €=10 indicating that ¢(€) is the

sum of two exponentials, ¢,(£) and ¢,(£), with 0.+ Ey. Note
that the number of long rods increases rapidly close to the
bonding temperature, revealing why it is difficult to separate
the onset of bonding from the ordering temperature in the
simulation data.

The average rod length as a function of temperature, at
two densities, p=0.2 and p=0.4, is shown in Fig. 4. The
simulation data corresponds to the points with error bars and
the theoretical prediction to the lines. The dashed lines are
the theoretical curves, with A=0, corresponding to the iso-
tropic solution while the full lines, with A>0, correspond to
the nematic phase solution. The transition temperatures are
indicated by vertical lines, the lower temperature being the
estimate obtained from the simulation data, Tj, and the
higher corresponding to the theoretical prediction, ij'
Above the critical temperature, there is quantitative agree-
ment between the simulation data and the theoretical results.
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FIG. 4. Average rod length as a function of temperature from simulation data (points with error bars) and theory (lines) for two densities,
p=0.2 (a) and p=0.4 (b). For the theoretical curves, the A=0 (isotropic) solution is plotted with dashed lines and the A>0 (nematic, T*
< T:m) solution with full lines. The temperature of the nematic transition is indicated with two vertical lines, corresponding to the theoretical

prediction Yih and that obtained from the simulation f:

Below the critical temperature, the nematic phase solution is
still in good agreement with the numerical results for the
system at the lower density, p=0.2, but significant differ-
ences are observed for the high density system, p=0.4. Even
in this case, the theory predicts that the average rod length
increases in the nematic phase, when compared to the isotro-
pic solution, in line with the simulation data. In this sense we
conclude that ordering enhances bonding as the equilibrium
rods are longer than they would have been in the isotropic
phase.

B. Isotropic-nematic phase transition

We now turn to the calculation of the critical isotropic-
nematic transition. Finite size effects are unavoidable when
self-assembly is present. In order to minimize them we
avoided simulating systems where the rod length approaches
the spanning length of the box. For a given density (p=0.2
and p=0.4) and simulation box (L=100), this sets a lower
bound on the temperature for which results may be obtained.
For both densities, we have limited production runs to tem-

peratures 7% >0.11 that guarantee £ <<L/2. A second finite-
size effect, relevant in the calculation of the order parameter,
is that of global fluctuations near the nematic critical tem-
perature, Tik In infinite systems at subcritical temperatures,
there is a preferred nematic orientation that remains constant,
but in finite systems the probability for a global fluctuation is
non-negligible. In long production runs, the mean value of
the order parameter A becomes zero below the critical tem-
perature as a result of these fuctuations. To avoid this, we
used the magnitude of A, which accounts for the small non-
zero values of the order parameter in the isotropic phase.
Although the data presented below was obtained for a single
lattice size (L=100), we have checked the results on larger
lattices and observed, for example, less than a 10% change in
the nematic transition temperature. Finally, we assume that
the isotropic-nematic transition for the polydisperse 2D
Zwanzig model remains in the Ising 2D universality class. A

rigorous finite size scaling analysis, required for the investi-
gation of the effect of polydispersity on the nature of the
transition, is left for future work.

The order parameter |A| as a function of temperature, is
shown in Fig. 5 for the two systems, p=0.2 (a) and p=0.4
(b). The theoretical curves are over-plotted as dashed lines
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FIG. 5. Plot of the orientational order parameter A as a function
of temperature for p=0.2 (a) and p=0.4 (b) with theoretical curves
over-plotted (dashed). The light dashed lines are the best fits to
(T"-T%)"8, where T'[p=0.2]=0.144 and T [p=0.4]=0.2075.
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FIG. 6. Fluctuations of the order parameter |A| as a function of temperature for densities p=0.2 (a) and p=0.4 (b). Vertical lines indicate

the estimated f:, as determined by the fit in the insets of Fig. 5.

and it is clear that the theory overestimates the transition
temperature in both cases, with the result for the high density
system being almost 30% higher. We estimate the transition
temperature, by fitting the simulation data with an Ising
order-parameter scaling of the form (Y;"—T*)”8 [26]. This
yields the values 7" =0.144 for p=0.2 and T =0.2075 for
p=0.4. The light dashed lines are the best fits to (T;k
—T%)!8, while the insets show that at temperatures not too
close to the transition, the Ising scaling hypothesis for the
order parameter is consistent with the simulation data.

As a final check on the continuity of the transition we
have calculated the fluctuations of the order parameter. The
zero field susceptibility per particle, x,, is [26]

B o= % (A2~ (AY], 42)

and is expected to diverge at the transition, more strongly
than the specific heat [26]. The simulation data correspond-
ing to the order parameter |A| are plotted as a function of
temperature in Fig. 6, for the two densities p=0.2 (a) and
p=0.4 (b). The vertical lines indicate the estimates of Tj, as
determined by the fit displayed in the insets of Fig. 5. The
theoretical results, obtained from Eq. (A11) are over-plotted
in Fig. 6. Note that the range of temperatures plotted here is
comparable to that of the inset in Fig. 3(a). The transition is
clearly signalled by the sharp maximum in the susceptibility,
that occur at temperatures slightly above the estimates for the
infinite system critical temperatures, Tf . The rounding off of
the divergence as well as the shift in the peak positions are in
line with finite size scaling theory [26] and confirm the con-
tinuity of the transition. We note that the shift in the peak
position is larger for the lower density system, where the
rods are longer, rendering the box length effectively smaller.

IV. CONCLUSIONS

We have studied the isotropic-nematic transition in a sys-
tem of self-assembling rods as part of the general effort to
develop a deeper understanding of self-assembly. A long
term goal is to rationalize the behavior of other systems such

as semiflexible polymeric systems with a small fraction of
functionalized monomers as well as that of particles with
lock-and-key type of interactions, encountered in biological
self-assembly [27-29].

We have investigated the influence of directional or bond-
ing interactions on the structure and phase diagram of a
model fluid close to an ordering transition, focusing on the
interplay between bonding and nematic ordering in a self-
assembled Zwanzig model in 2D. The simplicity of the
model allowed a generalization of the theory of associating
fluids that describes quantitatively the rod length density dis-
tributions and the average rod lengths, in the isotropic as
well as in the nematic phase. The average rod length was
found to be longer in the nematic phase, in comparison with
the isotropic length, and we conclude that nematic ordering
enhances bonding.

Comparison with Monte Carlo simulations, on the square
lattice, revealed that the location of the isotropic-nematic
transition is overestimated by the theory at densities as low
as p=0.2 and that results for higher densities are not reliable.
As higher-order virial coefficients for this model are known
exactly, significant improvement is possible at the expense of
the simplicity of the theoretical treatment.

One of the two response functions investigated, the spe-
cific heat, was shown to exhibit nontrivial structure at the
onset of self-assembly close to the isotropic-nematic transi-
tion. The self-assembly process and the ordering transition
occur separately but close in temperature, at p=0.2. The
mean-field theory was proved quite accurate in the descrip-
tion of the bonding contribution to the specific heat but less
so in the description of the specific heat at the isotropic-
nematic transition.

The question of whether ordering enhances bonding may
be worth investigating with a more accurate theory, as the
specific heat simulation data is difficult to interpret. The
theory presented here predicts that the bonding temperature
shifts to the nematic phase, at p=0.4, but due to the overes-
timate of the ordering temperature at this density this result
should be taken with caution. The simulation data for the
specific heat at p=0.4 was inconclusive and the shift of the
bonding temperature to the nematic phase at high densities is
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an open question. A finite size scaling analysis seems to be
required to allow the separation of the bonding and ordering
contributions to ¢y as well as to investigate the effect of
polydispersity on the nature of the isotropic-nematic transi-
tion, both of which will be addressed in future work.

The results of this work aim to contribute to the ellucida-
tion of the collective properties of patchy colloids using
simple models. It has been shown that in systems with a
small number of bonding sites the structure and phase dia-
gram may change drastically. In particular, if the number of
identical bonding sites per particle is reduced to two the criti-
cal density vanishes and gel-like states, with an open net-
work structure, become accessible at low packing fractions
[6]. We have addressed that limit for stiff chains and, shown
that, if the clusters are sufficiently stiff, nematic ordering will
preempt the access to the gel phase.
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APPENDIX

The isotropic-nematic critical line and the response
functions—specific heat and susceptibility in zero field, cy
and y,—are calculated most easily in terms of the auxiliary
variables,

X=zexp(A), (A1)

Y =zexp(- A). (A2)

These variables are written as implicit functions of (p,A,T),
using the equations of state (29) and (30),

2

p+A=exp(- Be)ﬁ, (A3)
2

p-A=explc B (a9

This formulation allows a straightforward calculation of the
derivatives of X and Y,

X\ (1-x)°

<3A>p,7_ P ) (43)
vy (1-v)°
(aA)F,,T__eXp(ﬂe)z(HY)’ (46)
X) __ e XU-X)
(aT>p,A__kBT2 1+X (A7)
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iY(l—Y)

aay
( ) == 2 s (AS)
9T, kgT® 1+Y

required in various quantities of interest, as listed below.
The calculation of the isotropic-nematic transition line

and the suscpetibility are most easily carried out, using (A1)

and (A2) in (25) to write the external field /, as a function of

(p,A,T),
Bh l(l X A) (A9)
=—|{In—--A].
2\ Y
The inverse order-parameter susceptibility is
Xo =\ oA or VoA )y \ax Jya\aA) g
JBh Yy
) (2] o
07Y X,A (9A p,T

which, using (A1)—(A6) and (A9), becomes, in zero field,
B"—l( I-x 1=y 1)
O+ ) T e -8 )
(A11)

This equation was used to calculate the theoretical suscepti-
blity plotted in Fig. 6. In the isotropic phase (2=0 and A
=0), X=Y =z, and the previous equation becomes

(@) _
oA/,
the zero of which defines the isotropic-nematic transition

line.
The internal energy per particle (40) is simply written as

u:—e{l—eXp(_ﬁ6)< X . Y )}’ (A13)
p 1-X 1-Y

and the specific heat per particle is

du du du oA
cy=\|— =|— +|— — | , (Al4)
JaT oo JaT pA JA o.T oT ool

Bl+z

, Al2
21—z ( )

where,

(%) :_0_T2A (A15)
p.h

e (5,
&A p,T
All these derivatives can be expressed in terms of (A5)—(A8),

and of the derivatives of u with respect to X, Y, and T. The
specific heat in zero field is then,

1 X? y?
pT*zkglcv=exp(— )( )

FIAC I A
1) _[FX) - F(M)P
2| Foo Fm , (A16)
p+A+p—A_
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where F (x):%. This expression was used to calculate the

theoretical specific heat plotted in Fig. 3(a). At fixed values

of p, T, and h, X, Y, and A (or z, A, and A) are obtained by
solving the equations of state (A3), (A4), and (A9). All other

PHYSICAL REVIEW E 79, 021505 (2009)

equilibrium quantities of interest may be calculated from
them. Note that =0 is equivalent to A=A and that in the
isotropic phase (h=0 and A=0), X=Y=z yielding simpler
expressions for the thermodynamic and structural properties.
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